Method Development for Rapid Evaluation of Sulfur Content and δ^{34} S Value in Sedimentary Rocks

HADAR COHEN-SADON¹, YOAV OVED ROSENBERG², Alon Amrani³

¹Hadar.cohen12@mail.huji,ac,il

²Yoavr@gsi.gov.il

³ Alon.Amrani@mail.huji.ac.il

Sulfur (S) content and its isotopic values (δ^{34} S) in sedimentary rocks is used to reconstruct paleoenvironment conditions of sediment deposition. However, S analysis in the rocks is highly complex and labor intensive. Here, a rapid (hours) and simple method for S quantification and δ^{34} S value determination of kerogen and pyrite in sedimentary rock was developed by coupling a RockEval (RE) analyzer to MC-ICPMS. A collection of 14 thermally immature sedimentary rocks, with varying composition, were pyrolyzed and the residual was combusted by the RE. Quantitative separation of the S fractions was achieved by an empirical relation between the relative amount of pyrolysis organic-S to total organic-S, and the Tmax-S value (the temperature of the organic-S peak maximum). Determination of δ^{34} S values with a precision of $\pm 0.2\%$ and accuracy of $\pm 1\%$ was achieved for pyrite-S, and the $\delta^{34}S$ of the organic-S can be determined by means of isotopic mass balance. Hence, this new method simplifies the lab work without compromising on accuracy. Moreover, we found that the new variable Tmax-S is correlated to $\delta^{34}\!S$ values of the organic-S, pyrite-S and the difference between them. The isotopic distribution between organic-S and pyrite-S and Tmax-S set by the sum of natural conditions and processes during sediment deposition and later in diagenesis and catagenesis processes. Hence, Tmax-S combined with the δ^{34} S values of pyrite-S and organic-S are proposed as a new proxy for paleo-environmental conditions, which can be achieved, using our new method, rapidly and accurately.