The influence of natural alteration on the quality of spodumene ores

J. CHISCHI¹*, H.C. OSKIERSKI¹*, M.F. ALHADAD¹, B. SCHULZ², G. SENANAYAKE¹, B.Z. DLUGOGORSKI³

¹College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia (*correspondence: Johannes.Chischi@murdoch.edu.au)
²Institute of Mineralogy, Technical University Bergakademie

Freiberg, D-09596, Freiberg, Germany ³Office of Energy and Resources Institute, Charles Darwin University, Darwin, NT 0909, Australia

Natural alteration poses a significant challenge for the economical processing of spodumene ores into concentrates suitable for conversion into battery grade lithium chemicals. Converter plant specifications of > 6 wt.% Li₂O and < 1 wt.% Fe₂O₃ for spodumene concentrates result in poor recoveries during processing from deposits with naturally altered spodumene and thus in the loss of valuable lithium to waste [1]. High Fe₂O₃ contents in the spodumene concentrate can further lead to clinker formation during calcination, lowering subsequent Li-extraction via leaching [2].

Here we use PXRD, EPMA, LA-ICP-MS and MLA to analyse the mineralogy, geochemical compositions and liberation characteristics of two Western Australian spodumene ores to develop processing strategies for increasing spodumene recovery while maintaining low Fe₂O₃ contents. Besides up to 0.9 wt.% of chemically substituted Fe₂O₃ present in spodumene itself, we identify micas among other alteration phases that are finely intergrown with spodumene as the main Fe₂O₃ carrier, containing up to 3.2 wt.%. For one of the ores liberation characteristics are primarily independent of particle size. For the other ore sample particle composition liberation of 90 - 95 % and expected spodumene recovery of 80 - 90 wt.% can only be achieved for smaller particle sizes between 125 and 500 $\mu m.$ Depending on alteration, grinding to smaller particle sizes could thus enable the rejection of almost all Fe-rich micas during spodumene processing.

Higher recoveries can offset the energy required for additional grinding and result in increased resource utilisation. Our study highlights that natural alteration of spodumene has a profound effect on ore quality and its suitability for the production of lithium chemicals suitable for the battery market.

[1] La Brooy & Harman (2018) *ALTA Conf. Proc.*, p. 216.
 [2] Aylmore et al. (2020) *ALTA Conf. Abs.*