Squeezing water from a stone: H₂O in lower crustal granulites & deep, hydrous fractional crystallization

EMILY J. CHIN¹ SEAN T. CURRAN¹ G. LANG FARMER²

¹Scripps Institution of Oceanography, UC San Diego, e8chin@ucsd.edu

²CIRES, University of Colorado Boulder

A considerable amount of water (H₂O) is locked within continental crust. While distribution of such H₂O decreases with depth as hydrous minerals become unstable, significant H₂O is bound to crystal lattice defects in nominally anhydrous minerals (NAMs) in the deep crust. Yet, few data exist on H₂O of lower crust, compared to over a decade of research on hydration state of the upper mantle. Here, we report H₂O concentrations, analyzed *in situ* on petrographic thin sections by SIMS, in NAMs of Proterozoic granulite xenoliths erupted in Devonian kimberlite of the State Line District (SLD), Colorado, USA. Bulk rock and mineral major element compositions testify to a mafic, igneous heritage, with mineralogy dominated by pyroxenes, garnet, plagioclase, and rutile, ilmenite, apatite. SLD granulites are more Fe-rich and Si-poor compared to MORB and do not overlap MORB cumulates. Instead, SLD granulites are similar to pyroxene and garnet-rich rocks ("arclogites") ascribed to subduction magmatism. Despite granulite-facies equilibration, SLD xenoliths preserve H₂O contents of 560, 347, 85 ppm in clinopyroxene, orthopyroxene, and garnet, respectively. Note that, due to cooling from near-solidus conditions to ~750°C, measured H₂O reflect minimum bounds from lowered solubility with falling temperature. However, H₂O intermineral ratios fall within experimental D values, indicating that even if cooling decreased absolute H₂O concentration, H₂O partitioning between minerals reflect equilibrium. Using reconstructed D_{bulk}, calculated melt H₂O contents last in equilibrium with the xenoliths range from ~ 1.5 wt% H₂O for most primitive (Mg#69) xenolith to ~5 wt% H₂O for evolved (Mg#55) xenoliths. Such H₂O contents are significantly higher than primitive MORB (0.1wt.%), and imply hydrous primary melt to crystallize such cumulates. Our results underscore the importance of deep fractional crystallization as a primary driver for water-rich nature of arc magmas. From the perspective of geologic history of North America, SLD xenoliths could represent arc cumulates associated with Proterozoic accretion of the Yavapai arc terrane.