Nitrogen isotope compositions of the Chang 7 Shale, the Ordos Basin, north China: implications of depositional redox changes

RUIQIAN CHEN1

¹College of Geosciences, China University of Petroleum (Beijing), Beijing 102249, China, richen@cup.edu.cn

Nitorgen isotope ($\delta^{15}N$) analysis has been used to evaluate depositional redox conditions in well-preserved sedimentary systems, however, less N-isotope studies have been made to reconstruct the redox changes in lacustrine shales. In this paper, we report the $\delta^{15}N$ data from the Upper Triassic Chang 7 Shale of the Ordos Basin, north China. Bulk δ^{15} N values are significantly higher in the Chang 7_3 and the lower part of the Chang 72 submembers (Zone A; average = $9.4 \pm 1.3\%$) than in the upper part of the Chang 7_2 and the Chang 7_1 submembers (Zone B; average = 5.4 ± 1.5 %). Lithological aspects of these deposits and previous geochemical measurements suggest that Zone A were mainly deposited under suboxic bottom water conditions, whereas Zone B deposits accumulated within an oxygenated water column. Stable organic carbon isotopes ($\delta 13C_{org}$) and total nitrogen (TN) values of the two zones display little variation that could be attributed to changing organic matter sources and/or post-depositional alteration of δ^{15} N. Thus, we suggest that changes of $\delta^{15}N$ through the Chang 7 Shale primarily reflect differences in depositional redox conditions and $\delta^{15}N$ values of shale can provide important details regarding the depositional history of unconventional resource plays.