SIMS sensitivity factors of ²H and ¹⁶O²H relative to ¹⁸O in spinel-structured oxides

G. F. Zellmer¹, N. Sakamoto², M. Kuroda³, I. Sakaguchi⁴, T. Kuritani⁵, H. Yurimoto^{2,6}

¹Volcanic Risk Solutions, Massey University, Palmerston North, New Zealand (g.f.zellmer@massey.ac.nz)
²Isotope Imaging Laboratory, CRIS, Hokkaido University, Japan (naoya@ep.sci.hokudai.ac.jp)
³ Geol. Survey of Japan, AIST, Tsukuba, Japan
⁴Nat. Inst. Material Sci., Tsukuba, Ibaraki, Japan
⁵Graduate School of Sci., Hokkaido University, Japan
⁶Japan Aerospace Exploration Agency, Sagamihara, Japan

Spinel-structured oxides ("spinels") are a group of nominally anhydrous minerals characterized by a wide range of solid solution. To allow the analysis of hydrogen in spinels by ion microprobe, Relative Sensitivity Factors (RSFs), which are typically matrix-dependent, need to be determined. For this work, we have selected 5 natural spinels from the Mg-Al-Fe-Ti-Cr-Mn-Zn compositional space. We present an approach to estimate spinel density on basis of bulk chemical composition determined by electron microprobe. Densities in our samples range from 3.7 to $> 5.1 \text{ g cm}^{-3}$. Samples were implanted with a fixed dose of deuterium (1 \times 10¹⁵ atoms cm⁻²) using an ion energy of 40 keV. Subsequently, we performed depth profiling using a Cs⁺ primary beam on the Cameca ims-1270 ion microprobe at Hokkaido University, monitoring secondary ion counts of ²H and ¹⁸O, and at high mass-resolution ¹⁶O²H, ¹⁷O¹H, and ¹⁸O, until the implanted ion counts dropped below background levels. From the reduced data, we calculated the RSFs for secondary ions of atomic ²H and molecular ¹⁶O²H relative to ¹⁸O as matrix element. RSFs for ²H are similar for all spinels at 1.11 ± 0.32 $(2\sigma) \times 10^{22}$ atoms per cm³, indicating a small matrix effect for ²H despite the large compositional range of spinels studied. In contrast, RSFs for ¹⁶O²H relative to ¹⁸O decrease with spinel density from 2.65 \pm 0.36 (2 σ) \times 10²¹ atoms per cm³ at 3.7 g cm⁻³ to 3.41 ± 0.73 (2 σ) × 10²⁰ atoms per cm³ at > 4.5 g cm⁻³, indicating a strong matrix effect on secondary dimer production during processes of ion sputtering and secondary ionization. Our data imply that the analysis of water in natural spinels may be undertaken through measurement of H or OH, but that spinel densities must be well-determined in the case of OH measurement. Mineral density effects on RSF values will have to be evaluated prior to analysis of water in other nominally anhydrous solid solution minerals.