Organic matter δ^{34} S lighter than the pyrite in Cryogenian Datangpo Fm

CHUNFANG CAI¹², PENG SUN², DAWEI LIU¹, GENMING LUO³, GARETH IZON⁴, CHENLU XU¹

- ¹ Institute of Geology and Geophysics, Chinese Academy of Sciences, China (cai_cf@mail.iggcas.ac.cn)
- ² Yangtze University, Wuhan, China (78940435@qq.com)
- ³ China University of Geosciences, Wuhan, China (gmluo@cug.edu.cn)

⁴ Massachusetts Institute of Technology, Cambridge, MA 02139, USA (gizon@mit.edu)

Up to now, marine sediments have generally been reported to have bulk organic matter $\delta^{34}S$ values 5 to 15‰ heavier than the associated pyrite. The possible reasons include preferential or faster reaction of ³²S-rich H₂S with reactive iron to precipitate pyrite, formation of organic sulfur from organic matter with polysulfides or element sulfur with more ³⁴S-rich than H₂S. Surprisingly, in the Cryogenian Datangpo Formation Mn-rich sediments, all bulk organic matter has $\delta^{34}S$ values lighter than the associated pyrite, and most of organic matter and pyrite have $\delta^{34}S$ heavier than the coeval seawter, up to 56‰ and 70‰, respectively, but all lighter than the carbonate-associated sulfates (CAS). The organic matter shows the relationship between $\Delta^{33}S$ and $\Delta^{36}S$ and small $\Delta^{33}S$ values indicating a BSR origin, and the relationship between δ^{34} S and Δ^{33} S characterized by its source sulfate and BSR in a low-SO4 environment as the result of a closed system Rayleigh fractionation. Based on these lines of evidence, two hypotheses are proposed as follow: 1) Earlier ³²S-rich FeS/FeS₂ but no significant amount of organic sulfur were oxidized by MnO₂ from the enhanced weathering immediately after the Sturtian Snowball to sulfate. No sulfur isotope fractionation is expected during this process as supported by the slightly S-isotopically heavier CAS than the pyrite, consequently, pyrite was precipitated from low sulfate conditions with sulfate from both sulfide reoxidation and ³⁴Srich SO₄ residue after the early bacterial sulfate reduction. 2) During early BSR, pyrite precipitation was inhibited and all ³²S-rich H₂S was incorporated into organic matter, forming the first generation of relatively ³²S-rich organic sulfur compounds. With progressive BSR in a closed diagentic environment, most of the pore water sulfate was depleted, all pyrite and second generation of organic sulfur formed from such environment are expected to have extremely heavy $\delta^{34}S$ values as found from some saline lacustrine sediments. Further work is ongoing.

This work is supported by NSFC with grant Nos. (41730424 and 41672143)