Noble gas isotope composition of the Yellowstone mantle plume

DAVID J. BYRNE¹, P.H. BARRY², M.W. BROADLEY¹, D.V. BEKAERT², M. Almayrac¹, R.L. Tyne³, C.J. Ballentine³, B.M. Marty¹

Centre de Recherches Pétrographiques et Géochimiques, Nancy, France

Woods Hole Oceanographic Institution, MA, USA Dept of Earth Sciences, University of Oxford, UK

The Yellowstone Plateau volcanic field is commonly thought to originate from a deep-sourced mantle plume impinging upon old Archean continental crust¹. Due to their inert nature, noble gas isotopes provide an ideal tool for distinguishing provenance and mixing processes of different volatile sources within the Earth. Here we present comprehensive noble gas isotope data for (n=34) gas samples collected from thermal areas across Yellowstone National Park.

Samples show a variable enrichment in primordial ³He, with ³He/⁴He ranging from 0.66 to 13.6R_a. Samples located in the center of the caldera tend to exhibit higher ³He/⁴He ratios, with lower values found towards the rim and outside of the caldera. ⁴⁰Ar/³⁶Ar values in excess of atmosphere (up to 438) are observed in samples with both high and low ³He/⁴He, indicative of ⁴⁰Ar contributions from both mantle and crustal sources.

We show that Ne isotopes in Yellowstone are derived from 3 components: atmosphere, a primitive mantle source, and crustal-derived nucleogenic Ne. Nucleogenic ²¹Ne excesses are inversely correlated with ³He/⁴He, suggesting a common source of crustal-derived radiogenic ⁴He and ²¹Ne. Samples with low nucleogenic ²¹Ne contributions define a mixing trend between atmosphere and the purported plume-source endmember. This correlation falls close to that previously determined for the Iceland plume², which is known to be extremely enriched in primordial isotopes, with ³He/⁴He up to 50R_a³.

Due to the high ⁴He/²¹Ne production ratio in the crust, He is likely more susceptible to overprinting by radiogenic additions during crustal interaction. We therefore conclude that the Yellowstone plume samples a more primitive mantle source than suggested by its relatively modest He isotope ratios,

[1] Huane et al., 2015, *Science*, **348:6236** [2] Trieloff et al., 2000, *Science*, **288:5468** [3] Stuart et al., 2003, *Nature*, **424:6944**