(K,Sr,□)(Ca,□)₃Al₆Si₁₀O₃₂, a dmisteinbergite-like phase from the Luobusa ophiolite, China: Evidence for quenching at mantle depths?

F. XIONG¹, X. XU¹, E. MUGNAIOLI², M. GEMMI², R. WIRTH³, E. GREW^{4*}

 ¹CARMA, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China (xiongfahui@126.com, xuxiangzhensjl@aliyun.com)
²IIT, Center for Nanotechnology Innovation@NEST, 56127 Pisa, Italy (enrico.mugnaioli@iit.it, mauro.gemmi@iit.it)
³GFZ Section 3.3, Chemistry and Physics of Earth Materials, Telegrafenberg, C 120, D-14473 Potsdam, Germany

(wirth@gfz-potsdam.de)

⁴Earth & Climate Sciences, University of Maine, Orono 04469, USA (*correspondence: esgrew@maine.edu)

Corundum extracted from chromitite body Cr-11 in the Luobusa ophiolite near Kangjinla (Tibet, China) contains inclusions of super-reduced Ti phases, largely TiN-TiC. The dmisteinbergite-like mineral consitutes part of a halo around a spheroid 20 μ m across composed of 50% of a Ti₁₀(Si,P)₇ – Ti₁₁(Si,P)₁₀ mixture and 50% TiSi₂ with minor TiP. Chemical analysis (EDX) of a crystal ca. 4 x 1 µm across yielded a composition $(K_{0.50}Sr_{0.25}\Box_{0.25})(Ca_{0.83}\Box_{0.17})_3Al_6Si_{10}O_{32}$. 3dimensional electron diffraction collected on the same crystal allowed structure solution and refinement (dynamical) in the hexagonal space group P6/mcc, a = 10.2(2) Å, c = 14.9(3) Å, Z = 2. The structure is topologically identical to that of dmisteinbergite, but site occupancies differ, e.g., one quarter of the Ca sites in dmisteinbergite are occupied by K and Sr in the halo phase, resulting in considerable rotation of the tetrahedra and doubling of a and b cell parameters. A phase of this composition and structure has not been reported either as a mineral or as a synthetic compound. Compositionally, the dmisteinbergite-like phase corresponds to 63% anorthite, 11% orthoclase, 5% SrAl₂Si₂O₈ and 21% quartz, *i.e.*, a Carich silica melt. The spheroid can be interpreted as a droplet of Ti-Si-P melt that crystallized to a mixture of ternary and binary phases. According to Griffin et al. [1] and Xiong et al. [2], super-reduced phases associated with corundum appear to reflect the local interaction of mantle-derived $CH_4 \pm H_2$ fluids with basaltic magmas in the shallow lithosphere (\sim 30– 100 km). Quenching of the silica melt gave a metastable dmisteinbergite-like phase instead of feldspar [3].

[1] Griffin et al. (2016) *J. Petrology*, **57**, 655–684. [2] Q. Xiong *et al.* (2017) *Eur. J. Mineral*, **29**, 557-570. [3] Krivovichev et al. (2012) *Can. Mineral.*, **50**, 585-592.