Source apportionment of PM₁₀ in the urban-rural fringe area of central Taiwan using chemical properties and Sr-Nd-Pb isotope ratios

PO-CHAO WU¹²³, KUO-FANG HUANG², CHIH-FU HSU⁴ , MING-NI CHEN⁴, MAO-CHANG LIANG²

¹Earth System Science Program, Taiwan International Graduate Program, Academia Sinica, Taiwan.

²Institute of Earth Sciences, Academia Sinica, Taipei, Taiwan. ³College of Earth Science, National Central University,

Taoyuan, Taiwan.

⁴Environmental Analysis Laboratory, Environmental Protection Administration, Zhongli, Taiwan.

This study aims to investigate chemical characteristics (including PM_{10} mass, water-soluble ions, and bulk compositions) and to trace possible sources of PM_{10} in the urban and rural fringe area of central Taiwan, where the environment is affected by intense industrial activities, such as coal-fired power plants, petrochemical complex, and industrial parks. PM_{10} samples were collected at 6 rural sites in central Taiwan at different wind conditions in wintertime, 2018.

The PM_{10} concentrations are low (15.7-74.0 µg m⁻³) at low wind-speed conditions (≤ 3 m/s, average wind speed), and have elevated nitrate and sulfate, and EF (enrichment factor, relative to UCC) values of V, Cu, Zn, As, Mo, Sb, and Pb. The Sr-Nd-Pb isotope ratios $({}^{87}Sr/{}^{86}Sr = 0.70830-0.71158;$ ϵ_{Nd} = -8.5 to -10.6; ${}^{206}Pb/{}^{207}Pb$ = 1.144-1.161; ${}^{208}Pb/{}^{207}Pb$ = 2.419-2.434) of the collected aerosol particles vary greatly and are significantly different from the natural dusts collected in the Choshui River catchment $({}^{87}\text{Sr}/{}^{86}\text{Sr} = 0.71617 \cdot 0.71930;$ $\varepsilon_{Nd} = -11.1$ to -13.1; ${}^{206}Pb/{}^{207}Pb = 1.174 - 1.188$; ${}^{208}Pb/{}^{207}Pb =$ 2.468-2.486). These elemental and isotope data indicate that the PM₁₀ samples collected at low wind-speed condition most likely come from the petrochemical complex and vehicle exhaust. In contrast, PM₁₀ concentrations are high (42.2-121 μ g m⁻³) at median and high wind-speed conditions (> 3 m/s), and the Sr-Nd-Pb isotope ratios $({}^{87}Sr/{}^{86}Sr = 0.71106-0.71468;$ $\varepsilon_{Nd} = -10.1$ to -11.4; ${}^{206}Pb/{}^{207}Pb = 1.156-1.168$; ${}^{208}Pb/{}^{207}Pb =$ 2.428-2.455) shift towards those of the natural end-member, suggesting that natural dusts contributed to PM₁₀ when wind speed is strong. The results show the great potential for tracing sources of ariborne particles in the urban-rural fringe area using the Sr-Nd-Pb isotope ratios.