Modelling the reactive transport of ¹⁴C in a disposal for radioactive waste

TORBEN WEYAND^{*}, GUIDO BRACKE, JENS ECKEL

GRS gGmbH, Schwertnergasse 1, 50667 Cologne, Germany (*correspondance: torben.weyand@grs.de)

Radioactive waste may contain the radionuclide ¹⁴C, which could generate gaseous species (e. g. CO₂, CH₄) and contribute to a potential radiation exposure. Therefore, an understanding of the transport of ¹⁴C and chemical interactions during transport, is necessary to assess the safe containment of radionuclides in a disposal for radioactive waste.

Since possible host rocks in Germany could contain saline solutions as pore water, the chemical interactions between ¹⁴C as ¹⁴CO₂ and highly saline solutions were modelled using the geochemical code PHREEQC [1]. The advective transport of the fluid phase (solution) was considered in this scoping safety analysis.

The chemical interactions between CO₂ and highly saline solutions form various aqueous species containing carbon. Since the pore solution contains MgCl₂, the solid phase MgCO₃(s) precipitates. Resulting in temporarily retained ¹⁴C as carbonate in the solid phase and the transport of ¹⁴C is delayed in time.

This ongoing study converts the model, which was developed for PHREEQC, into a model for the code TOUGHREACT to simulate the two-phase flow (solution, gas). Therefore, the model is extended to consider the two-phase flow and the impact of chemical interactions on the retention and transport behavior of ¹⁴C can be studied in more detail. Future work includes additionaly the THC-coupled code MARNIE-PHREEQC to compare the results of both codes to assess the plausibility of results of model calculations [2].

 Weyand, Bracke & Reichert (2014), GRS-Report 323, https://www.grs.de/publikation/grs-323.
Fischer, Seher & Bracke (2014), GRS-Report 334,

https://www.grs.de/content/grs-334.