Consequence of Hydrocarbon Haze Formation on Global Carbon Cycle under Anoxic and Mildly Oxidized Environment

YASUTO WATANABE¹⁺, EIICHI TAJIKA¹, KAZUMI OZAKI², PENG K. HONG³

 Department of Earth and Planetary Science, the University of Tokyo, Japan (*correspondence: yasuto@eps.s.utokyo.ac.jp)

- ² Department of Environmental Science, Toho University, Japan
- Planetary Exploration Research Center, Chiba Institute of Technology, Japan

The atmospheric oxygen level (pO₂) in the Archean (4.0-2.5 Ga) is suggested to have been much lower than 10-⁵ PAL (present atmospheric level) [1]. In sufficiently reducing atmosphere (CH₄/CO₂ > \sim 0.2), hydrocarbon haze may be formed [2]. In the Late Archean, while some geological records suggest temporal increase of pO₂ [3], another suggests a transient haze formation [4]. However, influence of the haze formation on the global carbon cycle has not been fully investigated. Here we used a coupled model of atmospheric photochemistry-marine microbial ecosystem-global carbon cycle, including a photochemical model "Atmos" [2], to investigate the effects of hydrocarbon haze formation on global carbon cycle under completely anoxic condition in the Middle Archean ($pO_2 <$ 10-10 PAL) and mildly oxidized condition in the Late Archean (pO₂ $\sim 10^{-6}$ PAL). We found that, removal of haze particles due to rainout from the atmpshere works as an effective CO₂ consumption pathway in completely anoxic atmosphere, which makes the climate unstable. In the mildly oxidized world, however, the haze formation rate was not affected significantly by the change in pCO₂, suggesting that there is a negative feedback mechanism concerning the haze formation rate through changes in the UV flux in the atmosphere and atmospheric redox condition. As a result, the hazy climate state could be stable under such a mildly oxidized condition. Our result is consistent with the geological record that suggests a transient formation of hydrocarbon haze in the Late Archean.

[1] Pavlov and Kasting (2002), Astrobiology 2(1), 27-41.

- [2] Arney et al. (2016), Astrobiology 16(11), 873-899.
- [3] Anbar et al. (2007), Science 317(5846), 1903-1906.
- [4] Izon et al. (2017), PNAS 114(13), E2571-E2579.