The Great Oxidation Event preceded a Paleoproterozoic 'snowball Earth'

MATTHEW R. WARKE^{1*}, TOMMASO DI ROCCO¹, Aubrey L. Zerkle¹, Aivo Lepland², Anthony R. Prave¹, Adam P. Martin³, Yuichiro Ueno⁴, and Mark W. Claire¹

¹School of Earth and Environmental Sciences, University of St Andrews, St Andrews, KY16 9AL, Scotland, UK; *mw438@st-andrews.ac.uk

²Geological Survey of Norway, 7491 Trondheim, Norway

³GNS Science, Private Bag 1930, Dunedin, NZ

⁴Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan.

The temporal relationship between the Great Oxidation Event (GOE) and a Paleoproterozoic 'snowball Earth' glaciation remains unresolved. We present new, temporally constrained, quadruple sulfur isotope measurements (δ^{34} S, Δ^{33} S and Δ^{36} S) from the Paleoproterozoic Seidorechka and Polisarka Sedimentary Formations in NW Russia. The older Seidorechka Sedimentary Formation preserves negative Δ^{33} S values and a Δ^{36} S/ Δ^{33} S slope of -1.86 ± 0.47 , consistent with Archean values. The vounger Polisarka Sedimentary Formation preserves mass-dependent signals, with a $\Delta^{36}S/\Delta^{33}S$ slope of -8.8 and negative δ^{34} S values. The transition from mass-independent (S-MIF) to mass-dependent fractionation of S isotopes (S-MDF) is bracketed by established radiometric ages of 2501.5 ± 1.7 Ma and 2434 ± 6.6 Ma. Thus, the S-MIF/S-MDF transition predates both the Polisarka glacial deposits and the ~2424 Ma Makganyene 'snowball Earth' diamictite in South Africa, supporting the hypothesis that atmospheric oxygenation caused the collapse of a methane-dominated greenhouse and triggered global glaciation.