Effectively controlling Fe(II) behaviors during H₂O-olivine-CO₂ hydrothermal reactions for H₂ production

JIAJIE WANG^{1*}, NORIAKI WATANABE¹, ATSUSHI OKAMOTO¹, KENGO NAKAMURA¹, TAKESHI KOMAI¹

¹Graduate School of Environmental Studies, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8579, Japan (*correspondence: wangjiajie7878@gmail.com)

Olivine [(Mg,Fe)2SiO4] has a high content in the crust and contains a large amount of Fe(II), oxidation of this Fe(II) during olivine hydrothermal alteration may have contributions to the hydrogen (H₂) society development. However, the rates of H₂ generation from olivine in both natural system and laboratory experiments were still very low. The main obstacles are the sluggish Fe(II) release from olivine through olivine dissolution and secondary minerals [e.g., brucite, Mg,Fe(OH)2] incorporation of the released Fe(II). In this study, NaHCO₃ solution was used to promote olivine dissolution with the release of Fe(II), and the behaviors of the Fe(II) during H2O-olivine-CO2 hydrothermal reactions under various reaction conditions (e.g., NaHCO3 concentration of 0-1.0 mol/L, initial pH of 8.3-10.9 and reaction temperature of 225-300 °C) were revealed to obtain a higher H₂ yield.

In experiment with a higher NaHCO3 concentration and a higher temperature, both the release of Fe(II) from olivine and the oxidation ratio of the released Fe(II) were significantly enhanced. For instance, with the addition of 0.5 mol/L NaHCO3 at a reaction temperature of 300 °C, 41.0% of the Fe(II) in initial olivine was released and 74.9% of the released Fe(II) was oxidized in 72 h. But for the experiment without NaHCO3 addition, only 23.1% of the Fe(II) was released from olivine and 35.2% of this released Fe(II) was oxidized. These two increases together comtributed to a higher H₂ production rate. Moreover, the control on the initial reaction pH also greatly influenced Fe(II) oxidation process. At a more alkaline pH (> 9.3), a larger amount of Fe(II) was released from olivine, but only a smaller part of this Fe(II) was oxidized to produce H₂. The increase in Fe(II) oxidation ratio was mainly attributed to the less incorporation of Fe(II) in serpentine [(Mg,Fe²⁺)_{3-0.5β}Fe³⁺Si_{2-0.5β}O₅(OH)₄].

This study suggested that Fe(II) behaviors during olivine alteration were able to be controlled by adjusting various reaction conditions, the optimal condition for H₂ production from olivine alteration is with 5.0-1.0 mol/L NaHCO₃ at pH \leq 9.3 and 300 °C.