Constraining the subsurface geochemical baseline of CMC Research Institutes' Field Research Station (FRS), Alberta

RACHEL UTLEY¹, NICHOLAS UTTING², GARETH JOHNSON³, MARTA ZURAKOWSKA⁴, DOMOKOS GYÖRE⁴, FINLAY STUART⁴, KIRK OSADETZ⁵, THOMAS DARRAH⁶, R. STUART HASZELDINE¹, STUART GILFILLAN^{1*}

¹School of GeoSciences, University of Edinburgh, Grant Institute, James Hutton Road, Edinburgh EH9 3FE, UK

²Natural Resources Canada, CanmetENERGY, 1 Oil Patch Drive Devon, Alberta, T9G 1A8, Canada

³Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, G1 1XJ, UK

⁴Isotope Geosciences, SUERC, East Kilbride G75 0QF, UK ⁵CMC Research Intitutes Inc., 3535 Research Way NW,

Calgary, Alberta, AB T2L 2K8 Canada

⁶School of Earth Sciences, The Ohio State University, Columbus, Ohio 43210 United States

*Correspondence: stuart.gilfillan@ed.ac.uk

Geochemical monitoring can verify secure CO_2 storage and detect unplanned CO_2 migration. A robust geochemical baseline is needed prior to subsurface CO_2 injection. We present the first multi-well gas and groundwater geochemical baseline characterisation at CMC Research Institutes' Field Research Station (FRS) in Alberta.

We confirm that CH₄ occurs pervasively in the shallow (<550 m) Upper Cretaceous bedrock succession. Using C₁/C₂+C₃ ratios, $\delta^{13}C_{CH4}$, δD_{CH4} we determine that the CH₄ is primarily of biogenic origin. However, we also identify a small, but resolvable (1 - 15 %), thermogenic CH₄ component that increases with depth, which is correlated with increasing radiogenic-sourced ⁴He.

Measured ⁴He concentrations exceed those that could be generated by in-situ radioactive decay of U and Th in the host Upper Cretaceous stratigraphy. ⁴He concentrations lie on a mixing line between the atmosphere and a nearby petroleum well that produces natural gas from Lower Cretaceous Viking Fm. This excess ⁴He could indicate mixing with a radiogenic component that is consistent with observed elevated nucleogenic and radiogenic-derived ²¹Ne* and ⁴⁰Ar* present in several gas samples.

In contrast to previous work, this indicates a small, but resolvable crustal contribution to the subsurface fluids at the FRS site, showing that a fluid connection from the petroleum producing Viking Fm. is present in this portion of the Western Canada Sedimentary Basin.