Equilibrium and kinetic fractionation on S-O clumping of sulfate

- YUICHIRO UENO^{1,2,3*}, MAYUKO NAKAGAWA², TOSHIKI KATSUTA¹, RIHO AOKI¹, NAOHIRO YOSHIDA^{2,4}
- ¹ Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro, Tokyo, 152-8551, Japan (*correspondence: ueno.y.ac@m.titech.ac.jp)
- ² Earth-Life Science Institute (WPI-ELSI), Tokyo Institute of Technology, Meguro, Tokyo, 152-8550, Japan
- ³ Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima-cho, Yokosuka 237-0061, Japan
- ⁴ Department of Chemical Science and Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8502, Japan

Sulfur and oxygen isotopes of sulfate have been used to trace biogeochemical processes through time. Potentially, doubly-substituted isotopologues of sulfate may provide unique additional information, though the measurement of isotopic clumping has been challenging. Recently, we have developed a SO₂F₂ method to determine $\Delta^{34}S^{18}O$ value, which represents relative abundance of ³⁴S¹⁸O species against stochastic distribution, by using high-mass-resolution mass spectrometer (Katsuta et al. in this volume). In order to understand the potential fractionation processes, we have conducted a series of experiments. First, sulfate was synthesized by oxidation of Na2SO3 solution at various temperature. The results show that the $\Delta^{34} S^{18} O$ value systematically decrease about 0.8‰ from 6°C to 120°C. More negative $\Delta^{34}S^{18}O$ can be observed when the sulfite was quickly oxidized and precipitated as BaSO₄. The results suggest that the oxygen exchange between SO32- and H2O is responsible for changing the abundance of ³⁴S-¹⁸O bonding in the resulting sulfate, though additional kinetic effect should be accompanied during the oxidation step. Once the SO₄²⁻ ion forms, the $\Delta^{34}S^{18}O$ value seems to be quenched likely due to very slow exchange of oxygen with water. These results suggest that sulfate $\Delta^{34}S^{18}O$ may not be utilized as a geothermometer for paleo-seawater, instead may be a tracer for distinguishing several key biogeochemical processes, including oxidative weathering and microbial sulfur metabolisms.