¹⁸²W isotope systematics in crustal and mantle-derived rocks from the Kaapvaal Craton, Southern Africa

JONAS TUSCH¹, CARSTEN MÜNKER¹, J.E. HOFFMANN², KATHRIN P. SCHNEIDER³

 ¹ Department of Geoscience, University of Cologne, Zülpicher Str. 49b, 50674 Cologne, Germany (*correspondence: j.tusch@uni-koeln.de)
²Freie Universität Berlin, Berlin, Germany
³Friedrich-Alexander Universität, Erlangen, Germany

The presence of anomalous ¹⁸²W isotope compositions in Archean rocks can either be ascribed to early silicate crystalliquid fractionation, or missing late accretionary components in their mantle sources. Isotope anomalies of ¹⁴²Nd (decay product of the short lived 146Sm) in Archean rocks that are copuled with ¹⁸²W anomalies can clearly provide evidence that early silicate differentiation operated during the first 100 Ma [1]. However, pristine coupled ¹⁴²Nd – ¹⁸²W records are often obscured by metasomatic redistribution of W during metasomatism [2]. Rocks from the Kaapvaal Craton, South Africa are well suited to search vor vestiges of early silicate differentiation, because they were shown to display both heterogeneous ¹⁴²Nd and ¹⁸²W compositions [3-5]. A bimodal distribution of ¹⁴²Nd compositions has been taken as evidence that different mantle domains were involved in the formation of rocks from the Kaapvaal Craton [5]. Here we report highprecision ¹⁸²W isotope data for a selection of crustal and mantle-derived rocks from the Ancient Gneiss Complex (AGC; Swaziland) and the Barberton Greenstone Belt (BGB; South Africa) of the Kaapvaal Craton. Many of these samples have previously been analysed for their ¹⁴²Nd compositions [5]. Our ¹⁸²W isotope data, in combination with the ¹⁴²Nd data and initial $\epsilon Nd_{(t)}$ and $\epsilon Hf_{(t)}$ values, confirm that at least two distinct mantle domains were involved in the formation of the crustal rocks from the AGC and mafic volcanic units from the BGB. Moreover, by combining ¹⁸²W isotope analyses with high-precision isotope dilution measurements for HFSE, U, and Th, we demonstrate that many rocks were affected by a widespread metasomatic event that obscured pristine ¹⁸²W isotope signatures.

[1] Bennett et al. (2007) *Science* **318**, 1907-1910. [2] Tusch et al. (2019) *GCA* **257**, 284-310. [3] Touboul et al. (2012) *Science* **335**, 1065-1069. [4] Puchtel et al. (2016) *G3* **17**, 2168-2193. [5] Schneider et al. (2018) *EPSL* **487**, 54-66