Abiotic CH₄ production in the subsurface of terrestrial planets

JESSE TARNAS¹, JACK MUSTARD¹, BARBARA SHERWOOD LOLLAR², VLADA STAMENKOVIĆ³, OLIVER WARR²

¹Dept. of Earth, Environmental and Planetary Sciences, Brown University, Box 1846, 324 Brook St., Providence RI, 02912. jesse tarnas@brown.edu

²Dept. of Earth Sciences, Univ. of Toronto, Canada M5S 3B1

³NASA Jet Propulsion Laboratory, California Institute of

Technology

High concentrations of abiotic CH₄ are found in Earth's kilometers-deep subsurface [1]. Many of these fluids have been isolated for $\sim 10^7$ - 10^9 years [e.g. 2]. In Kidd Creek, one of the most abiotic-CH₄-rich subsurface sites, C&H isotpic signatures, CH₄/C2+ ratios [1,2], and radiogenic ³He/⁴He values (among other noble gas evidence) [4] indicates that most abiotic CH₄ in this system formed via low temperature reactions with negligible mantle-sourced CH₄ input. Here we use the world's largest database of kilometers-deep subsurface dissolved gases and isotopes to quantify in situ abiotic CH₄ production rates in these subsurface systems, as well as regional variations in production rates between sites in Canada, South Africa, and Finland.

We find that in situ abiotic CH₄ production rates range from ~[0.008-2] X 10⁻⁴ moles CH₄ m⁻³ year⁻¹, with South African sites showing the lowest production rate and Canadian sites showing the highest. This equates to an abiotic CH₄ production rate of ~[0.02-3.6] X 10¹¹ moles year⁻¹ from the top 10 km of the Precambrian lithosphere (0.53 X 10⁹ km³ in volume). We scale our model for other planetary objects and find that low temperature abiotic CH4 production is sufficient to explain a variety of phenomena, including generation of transient reducing greenhouse atmospheres to warm ancient Mars above freezing [5], modern detections of CH₄ on Mars, and CH₄ detected in Enceladus' plumes [6]. Low temperature abiotic CH₄ production could also generate CH₄ clathrate layers proposed to insulate Pluto's subsurface ocean [7] as well as subsurface brines inside Ceres [8]. It can also provide an endogenous source for Titan's atmosphere, consistent with noble gas observations [9], and could generate a false-positive 'biosignature' in super-Earth exoplanet atmospheres. [1] Sherwood Lollar et al. 2006, Chem. Geo. 226.[2] Warr et al. 2018 GCA 222. [3] Sherwood Lollar et al. 2002, Nat. 416. [4] Holland et al. 2013 Nat. 497. [5] Turbet et al. 2019 Icar. 321. [6] Waite et al. 2006 Sci. 311.[7] Kamata et al. 2019 Nat. Geo. 12. [8] Castillo-Rogez et al. 2019 GRL 46. [9] Glein et al. 2015 Icar. 250.