Abundance of ¹³C-¹³C bonding in biotic and abiotic ethane measured by a new C₂F₆ method

Koudai Taguchi^{1*}, Tomonari Yamamoto¹, Mayuko Nakagawa^{1,2}, Alexis Gilbert^{1,2}, Yuichiro Ueno^{1,2,3}

¹Department of Earth and Planetary Science, Tokyo Institute of Technology, Meguro, Tokyo, 152-8551, Japan (*correspondence: taguchi.k.ab@m.titech.ac.jp)

²Earth-Life Science Institute (WPI-ELSI), Tokyo Institute of

Technology, Meguro, Tokyo, 152-8551, Japan ³Department of Subsurface Geobiological Analysis and

Research (D-SUGAR), Japan Agency for

Marine-Earth Science and Technology (JAMSTEC), Natsushima-cho, Yokosuka 237-0061, Japan

Abstract

Doubly-substituted isotopologue could be a potential tracer for biogeochemical processes, though the study of ¹³C-¹³C isotopologue is limited [1]. Here, we propose a new fluorination method for measuring ¹³C-¹³C isotopologue of C₂ molecules using a conventional isotope ratio mass spactrometer. Because fluorine has only one stable isotope, ¹³C-¹³C isotope species in C₂ molecules were measured as C₂F₆ arising from the fluorination of C₂ molecules. The method is applicable to ethane from natural gas samples but also to ethanol. Reproducibility of the whole protocol, including chemical modification steps and the mass spectrometry of C_2F_6 is 0.14‰ for the $\Delta^{13}C^{13}C$ value. We applied this method to sevral C2 molecules: ethane from natural gas (thermogenic and abiotic), biologically derived ethanol as well as abiotic ethane produced by UV irradiation, spark discharge, Fischer-Tropsch synthesis and Gamma ray irradiation [2].

Ethane from thermogenic natural gas samples and biologically derived ethanol show a narrow range of $\Delta^{13}C^{13}C$ values varying from +0.72‰ to +0.90‰ relative to our tank C₂F₆ gas. In contrast, putative abiotic ethane from Kidd Creek show significantly lower $\Delta^{13}C^{13}C$ value of 0.25‰. Also, the ethane synthesized by all the experiments show the low $\Delta^{13}C^{13}C$ values similar to the Kidd Creek ethane or even lower. Therefore, C-C clumping may be useful to distinguish biotic and abiotic origins of C2 molecules.

[1] Clog M *et al.* (2018) *Geochim Cosmochim Acta* 223,229-244. [2] Boreham C J et al. (2020) Radiatio Physics and Chemistry 168,