An experimental and theoretical calibration of CH₄-H₂-H₂O hydrogen isotopic equilibrium from 3-200°C

DANIEL A STOLPER^{1,2}, ANDREW C TURNER¹, DANIEL L ELDRIDGE^{1,2}, MARKUS BILL², MARK E CONRAD², ROMAN KOROL³, THOMAS F MILLER III³

¹Dept. of Earth and Planetary Science, UC Berkeley, CA, USA (dstolper@berkeley.edu)
²Earth and Envi. Science Area, LBNL, Berkeley CA, USA
³Div. of Chem. and Chem. Eng., Caltech, Pasadena CA, USA

The hydrogen isotopic composition of CH₄ is used to trace both its provenance and formational mechanisms. Based on CH₄ clumped-isotope measurements, it has been proposed that CH₄ may form in or later reach hydrogen isotopic equilibrium with local waters at temperatures <200°C (e.g., Stolper et al., 2015; Wang et al., 2015; Giunta et al., 2019).

Horibe and Craig (1995) experimentally determined and provide an equation for the relative hydrogen isotopic composition of CH₄ vs. H₂O_(*l*) at equilibrium ($\alpha_{CH4(g)-H2O(l)}$) from 200-500°C. Below 200°C, $\alpha_{CH4(g)-H2O(l)}$ can be estimated by extrapolating the Horibe and Craig (1995) equation or using theoretical estimates of $\alpha_{CH4(g)-H2O(g)}$ (Bottinga, 1969, Richet et al., 1977) combined with experimental determinations of $\alpha_{H2O(g)-H2O(l)}$ (Horita and Wesolowski, 1994). Such approaches yield $\alpha_{CH4(g)-H2O(l)}$ values that differ by up to 163‰ at 0°C. Consequently, knowledge of $\alpha_{CH4(g)+H2O(l)}$ at low temperatures (<200°C) is uncertain.

Here we present an experimental determination of $\alpha_{CH4(g)-H2O(l)}$ at temperatures <200°C. We equilibrated CH4 and H₂ from 3-200°C with γ -Al₂O₃ catalysts and converted values of $\alpha_{CH4(g)-H2(g)}$ to $\alpha_{CH4(g)-H2O(l)}$ using previous experimental determinations of $\alpha_{H2(g)-H2O(l)}$ (Rolston et al., 1976) or $\alpha_{H2(g)-H2O(g)}$ (Suess, 1949; Cerrai et al., 1954) combined with $\alpha_{H2O(g)-H2O(l)}$ (Horita and Wesolowski, 1994). We use a bracketing approach to demonstrate experiments reached equilibrium. Our experimentally determined $\alpha_{CH4(g)-H2(g)}$ values agree with new theoretical estimates presented here based on Path Integral Monte Carlo (PIMC) calculations: Regression of experimental vs. PIMC 1000xln($\alpha_{CH4(g)-H2(g)}$) values from 550 to 1330‰ yields a slope of 1.008±0.011 (1 s.e.) and intercept of -5.1±10.5. At 3°C, our $\alpha_{CH4(g)-H2O(l)}$ value differs the extrapolation of Horibe and Craig (1995) by 76‰.

Finally, we show that $\alpha_{CH4(g)-H2O(l)}$ values of marine CH₄ samples with known formation temperatures commonly yield isotopic compositions consistent with formation in isotopic equilibrium using our calibration while freshwater systems do not. We provide a general explanation for this based on the thermodynamic framework given in Valentine et al., (2004).