Effect of H₂ diffusion on the H₂O systematics and redox state of glasses

X.M. BOYES^{1*}, E. STOLPER¹

¹Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA (*correspondence: <u>xboyes@caltech.edu</u>)

H₂ diffusion and reaction

The high diffusivity of H₂ in silicate melts and glasses relative to the more abundant dissolved species (e.g., hydroxyl, molecular H₂O) suggests that, despite its low solubility, diffusion of H₂ could be a significant mode of H transport during igneous processes, especially under low fO_2 conditions such as those experienced by lunar magmas [1]. However, the diffusion of H₂ in silicate melts and glasses is complicated by the reaction Fe₂O₃ + H₂ \Leftrightarrow 2FeO + H₂O, which result in changes in Fe³⁺/Fe²⁺ (and therefore fO_2) and influences the bulk diffusion of H [2,3].

Computational model

We performed calculations using a coupled diffusionreaction model to simulate H₂ ingassing or degassing in rhyolitic melts/glasses and the corresponding effect on H2Ot (H dissolved as OH and molecular H₂O) and fO₂. Results for H₂ ingassing show the formation of a H₂Ot peak produced via the reaction given above, accompanied by a decrease in Fe³⁺/Fe²⁺. The H₂O generated by reaction diffuses much more slowly than H₂, and the overall effect is a retardation of the bulk diffusion of H into the sample. This coupled redox front/H2Ot peak is seen in the experiments of Gaillard et al. [2,3]. Conversely, during degassing, rapid H₂ loss leads to an accompanying decrease in H₂Ot and increase in Fe³⁺/Fe²⁺ as H₂O reacts with FeO to compensate for the loss of H₂. Critical predictions of this behaviour is that joint degassing of H₂O and H₂ will lead to much faster loss of water than degassing of H₂O alone and will act to oxidise the glass/melt.

Application to lunar melt spherules

Our modeling, although currently limited to rhyolitic rather than basaltic compositions, predicts that at lunar conditions, including the effect of H_2 degassing from melt spherules can lead to melt oxidation and a higher apparent H_2O degassing rate. This could have implications for studies considering H_2O degassing [4], and the occurance of redox profiles [5] in lunar glass spherules.

 Zhang (2011) LPSC 42, 1957. [2] Gaillard et al. (2003a) Am Min. 88, 308-315. [3] Gaillard et al. (2003b) GCA 67, 2427-2441. [4] Saal et al. (2008) Nature 454, 192-195. [5] McCanta et al. (2019) Am Min. 104, 453-458.