Globally enhanced Hg deposition and Hg isotopes in the K/Pg and PT boundaries: link to volcanism

A. N. SIAL^{1*}, JIUBIN CHEN², L. D. LACERDA³, C. KORTE⁴, J. E. SPANGENBERG⁵, J. C. SILVA-TAMAYO¹, C. GAUCHER¹, V. P. FERREIRA¹, J. A. BARBOSA¹, N. S. PEREIRA¹, P. R. RIEDEL¹
^{1*}NEG-LABISE, UFPE, Recife, Brazil; sial@ufpe.br
²ISESS, Tianjin University, China; jbchen@tju.edu.cn
³ LABOMAR, UFC, Brazil; ldrude@fortalnet.com.br
⁴ Univ. of Copenhagen, Denmark; korte@geo.ku.dk
⁵ Univ. of Lausanne, Switzerland; jorge.spangenberg@unil.ch

Mercury (Hg/TOC) spikes from eight classical PTB sections display similar patterns across the extinction interval. At Meishan, these spikes are in the LPME and ETME while at Hovea-3, Ursula Creek, Idrijca and Rizvanuša they are at the LPME and PTB. The Rizvanuša section displays one peak at the ETME; Zal and Abadeh sections, at the LPME and ETME, while Misci shows enrichment at the LPME. Three Hg/TOC spikes are seen in the Stevns Klint, Gubbio, Um Sohringkew and Poty K/Pg sections: spike I within the CF2 biozone, spike II at the K/Pg boundary layer, and spike III within the P1a subzone. In a $\delta^{202} Hg$ (MDF) vs $\Delta^{201} Hg$ (MIF) plot, most samples from the PT extinction interval lie within the volcanic-emission box. Hg-isotope signatures resulted from mixing of volcanic and normal marine sediment Hg, generating four trends whose Δ^{201} Hg show negligible variation. Rizvanuša, Idrijca and Misci sections, closer to the STLIP, show less terrigenous-Hg influx, and Δ^{201} Hg \approx zero. Marked influence occurs in sections far distant from the STLIP (Meishan, Ursula Creek, Hovea-3) that also exhibit negative Δ^{201} Hg. The two sections from Iran, at intermediate distance from the STLIP, exhibit the highest, positive Δ^{201} Hg values (Abadeh) and the lowest, negative Δ^{201} Hg values (Zal). A Δ^{199} Hg vs Hg (n.ng⁻¹) plot suggests that volcanic Hg has been contaminated by normal marine source-Hg influx. In the K/Pg, two trends emerge from the δ^{202} Hg vs Δ^{201} Hg plot: (a) spike II trend (K/Pg clay) which displays Δ^{201} Hg \approx zero, and (b) spike III trend in the P1a subzone. In summary, it can be said that volcanic Hg isotopes in the K/Pg boundary received little terrigenous-Hg influence. At the PTB, in contrast, volcanic Hg received influence from terrigenous-source, more intense in samples far distant from the STLIP.