Redox controlled stable chromium isotope fractionation during planetary differentiation

JI SHEN^{1*}, LIPING QIN¹, JIUXING XIA², RICHARD W. CARLSON³, SHICHUN HUANG⁴, ROSALIND T. HELZ⁵, TIMOTHY D. MOCK³

¹ CAS Key Laboratory and CAS Center for Excellence in Comparative Planetology, University of Science and Technique of China, China (*correspondance: sjlcwqqq@ustc.edu.cn)

² Zhejiang University, China

³ Carnegie Institution for Science, United States

⁴University of Nevada, United States

⁵USGS Volcano Hazards Program VA, United States

The lunar and Vesta basaltic rocks have slightly lighter Cr isotope compositions than terrestrial basalts, and two processes have been previouly proposed: volatilization loss of oxidized Cr species during planetary magmatic ocean stage [1, 2]; and redox-related isotope fractionations during partial melting or crystal fractionation [3]. Our recent work has shown that Cr isotope fractionation factors between mantle minerals is controlled by oxygen fugacity [4]. Therefore, it is necessary to investigate Cr isotope behaviors during magma processes and the effect of oxygen fugacity.

In the current study, we analyzed twenty-one wellstudied OIBs from three Hawaiian volcanos: Kilauea, Koolau and Mauna Kea. The homogenous δ^{53} Cr of Koolau and Mauna Kea lavas implies that post-magmatic alterations do not significantly change Cr isotope systems. In contrast, δ^{53} Cr of Kilauea Iki basalts vary from -0.18‰ to 0.00‰, and are positively correlated to MgO and Mg#. This is interpreted as a result of crystallization and accumulation of spinel and olivine during magma differentiation.

Combining these results, we present a quantitative model that relates Cr isotope compositions of the basaltic rocks from Earth, Moon and Vesta, to the crystallization assemblage, the fractionation degree, and the $Cr^{2+}/\Sigma Cr$ ratios of minerals and melts (dominated by f_{02}). We speculate that the lunar and the Earth's mantle have the same Cr isotope composition (-0.16‰ to -0.09‰). The low δ^{53} Cr in the lunar mafic rocks is the result of redox-controlled crystal fractionation and accumulation of lunar magma ocean.

[1] Sossi et al. (2018) PNAS, 115, 10920-10925. [2] Zhu et al. (2019) GCA, 266, 598-610. [3] Bonnand et al. (2016) GCA, 175, 208-221. [4] Shen et al. (2018) EPSL, 499, 278-290.