Redox controlled stable chromium isotope fractionation during planetary differentiation

JI SHEN1*, LIPING QIN1, JIU XING XIA2, RICHARD W. CARLSON3, SHICHUN HUANG4, ROSALIND T. HELZ5, TIMOTHY D. MOCK3

1 CAS Key Laboratory and CAS Center for Excellence in Comparative Planetology, University of Science and Technique of China, China (*correspondance: sjlcwqqq@ustc.edu.cn)
2 Zhejiang University, China
3 Carnegie Institution for Science, United States
4 University of Nevada, United States
5 USGS Volcano Hazards Program VA, United States

The lunar and Vesta basaltic rocks have slightly lighter Cr isotope compositions than terrestrial basalts, and two processes have been previously proposed: volatilization loss of oxidized Cr species during planetary magmatic ocean stage [1, 2]; and redox-related isotope fractionations during partial melting or crystal fractionation [3]. Our recent work has shown that Cr isotope fractionation factors between mantle minerals is controlled by oxygen fugacity [4]. Therefore, it is necessary to investigate Cr isotope behaviors during magma processes and the effect of oxygen fugacity.

In the current study, we analyzed twenty-one well-studied OIBs from three Hawaiian volcanos: Kilauea, Koolau and Mauna Kea. The homogenous δ53Cr of Koolau and Mauna Kea lavas implies that post-magmatic alterations do not significantly change Cr isotope systems. In contrast, δ53Cr of Kilauea Iki basalts vary from -0.18‰ to 0.00‰, and are positively correlated to MgO and Mg#. This is interpreted as a result of crystallization and accumulation of spinel and olivine during magma differentiation.

Combining these results, we present a quantitative model that relates Cr isotope compositions of the basaltic rocks from Earth, Moon and Vesta, to the crystallization assemblage, the fractionation degree, and the Cr2+ΣCr ratios of minerals and melts (dominated by fO2). We speculate that the lunar and the Earth’s mantle have the same Cr isotope composition (-0.16‰ to -0.09‰). The low δ53Cr in the lunar mafic rocks is the result of redox-controlled crystal fractionation and accumulation of lunar magma ocean.