¹³CDH₃ and ¹²CD₂H₂ Geothermometers Record Thermogenic CH₄ rising along Active Faults from Depths of 5, 6.5, and 8 km

D. $RUMBLE^1$, Y.-T, LIN^2 , L.-H. LIN^3 , P.-L. $WANG^4$, and E.D. YOUNG⁵

¹Geophysical Lab, Carnegie Inst. Washington, Washington, DC 20015, USA (drumble@carnegiescience.edu)

²Department of Geosciences, National Taiwan Univ., Taipei, Taiwan (<u>r96241308@ntu.edu.tw</u>)

³Department of Geosciences, National Taiwan Univ., Taipei, Taiwan (lhlin@ntu.edu.tw)

⁴Institute of Oceanography, National Taiwan Univ., Taipei, Taiwan. (plwang@ntu.edu.tw)

⁵Department Earth, Planetary, and Space Sciences, Univ. of California, Los Angeles, CA, USA (eyoung@epss.ucla.edu)

Methane is rising to Earth's surface through mud volcanoes located along active fault outcrop traces in Southwestern Taiwan [1]. Bubbles of CH₄ burst vigorously in muddy pools with temperatures of ground water changing from 24° to 40° C following local earthquakes. Mud pools are stained by floating oily residues smelling of hydrocarbons. Measured abundances of ¹³CDH₃ and ¹²CD₂H₂ emitted from mud volcanoes of the Chukou and Chisan faults and from Wandan are equilibrated at temperatures of 150°, 200°, and 260° C. The ${}^{13}\text{CDH}_3$ and ¹²CD₂H₂ equilibrated geothermometers changed from 150° to 240 °C at a single emission site, the SYNH mud volcano. The range of temperatures is consistent with thermogenic formation of CH₄ from buried organic debris within the thermal regime of the "gas formation window". Our working hypothesis is that active faults drain reservoirs of thermogenic methane from organic-rich sediments lying at depths of 5, 6.5, and 8 km. We are testing the hypothesis by conducting time-series sampling of the mud volcanoes of SW Taiwan.

This work is offered to honor the outstanding research achievements of Bjorn O. Mysen in understanding silicate melts.

[1] Rumble et al. (2018) Jour. Asian Earth Sci. 167 218-221.