U(VI) reduction in an oligotrophic ferruginous ocean analog?

S. J. ROMANIELLO^{1*}, G. J. GILLEAUDEAU², E.D. SWANNER³, CHAD A. WITTKOP⁴, X. CHEN⁵

- University of Tennessee, Department of Earth and Planetary Sciences, Knoxville, TN, USA
 *Corresponding author: <u>sromanie@utk.edu</u>
- Department of Atmospheric, Oceanic, and Earth Sciences, George Mason University
- ^{3.} Iowa State University, Department of Geological & Atmospheric Sciences, Ames, IA
- Minnesota State University, Department of Chemistry & Geology, Mankato, MN
- Florida State University, Department of Earth, Ocean, & Atmospheric Science, FL, USA

The fidelity of the uranium isotope paleoredox proxy depends in large part on our mechanistic understanding of the pathways that induce U isotope fractionation during the reduction of U(VI) to U(IV). Most early applications of the U isotope proxy did not clearly distinguish between U reduction occurring under anoxic Fe(II)-bearing ferruginous conditions and sulfide-bearing euxinic conditions. In contrast, laboratory experiments suggest that the magnitude and even the direction of U isotope fractionation accompanying U reduction may depend on a variety of factors including reaction kinetics, U speciation, and/or the identity of the reductant. While U isotope fractionation has been extensively studied in modern euxinic freshwater and marine settings, U geochemistry in equivalent ferruginous environments remains poorly understood.

In order to address this gap, we collected water column and sediment profiles from Canyon Lake, a naturallyoccurring oligotrophic ferruginous lake located in northern Michigan, USA. Dissolved U concentrations increased from 0.24 ppb in the oxic mixolimnion to 0.83 ppb in the ferruginous monimolimnion, paralleling increases in conductivity. Mixing relationships and δ^{234} U profiles suggest that dissolved U is being provided by on or more unique groundwater sources, but did not show definitive evidence for a reductive sink of dissolved U even in the presence of 1.5 mM Fe(II)aq. Water column samples as well as oxic and anoxic sediments were all characterized by a uniform δ^{238} U value of -0.38 \pm 0.06 %. In contrast with predictions that U(VI) should be rapidly reduced and scavenged from the water column in the presence of Fe(II), our preliminary data suggest a limited role for U(VI) reduction under oligotrophic ferruginous conditions.