Fine-grained carbonates in mid-Archean ‘Oxygen Oases’: Origins and implications for CO\textsubscript{2} level

ROBERT RIDING1*, PHILIP FRALICK2, LIYUAN LIANG1, MUNIRA AFROZ2,3, STEFAN LALONDE3, BRITTANY RAMSAY2

1Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996, USA
2Geology Department, Lakehead University, Thunder Bay, Ontario, Canada
3CNRS-UMR6538 Géosciences Océan, European Institute for Marine Studies, Plouzané, France
*Correspondence: rriding@utk.edu

Fine-grained carbonates are widespread in late Mesoarchean (2.8-2.95 Ga) shallow marine platform interior limestones and dolostones in south-central Canada [1]. Neomorphism obscures the original grain-size but their mesoscopic fabrics are typical of carbonate mud deposits. These putative fine-grained sediments are very common among associated carbonate fabrics that include stromatolites, fenestral-laminites, seafloor herringbone and crystal crusts. Since stromatolites are present but not very abundant in these Archean platform interiors, oxygenation was possibly mainly accomplished by planktic rather than benthic cyanobacteria, whose distribution may reflect higher nutrient levels in nearshore environments [2].

We infer that in these Archean ‘Oxygen Oases’ [3], fine-grained carbonates originated as water column ‘whitings’, precipitated as a result of oxygenic photosynthesis. Either or both of two processes may have operated: (i) Oxidative removal (by molecular oxygen) of dissolved iron and/or (ii) Cyanobacterial CO\textsubscript{2}-concentrating mechanisms (CCM) that cause pH increase adjacent to cells. CCM are only induced in present-day cyanobacteria when CO\textsubscript{2} becomes a limiting factor at ≤12 x PAL [4]. Calculations indicate that neither mechanism is excluded by current estimates of mid-Archean seawater chemistry. This fossil proxy for atmospheric CO\textsubscript{2} level would constrain climate models and Faint Young Sun interpretations.