What can isotopes tell us about the atmospheric H₂ cycle?

MARIA ELENA POPA¹, DIPAYAN PAUL², CHRISTOF JANSSEN³, FREDERIK FELIUS⁴, FABIAN EDUARDO TAPIA RODRIGUEZ⁵, THOMAS RÖCKMANN⁶

¹ Utrecht University, Institute for Marine and Atmospheric Research Utrecht (IMAU), m.e.popa@uu.nl

² University of Groningen, Centre for Isotope Research (CIO), d.paul@rug.nl

³ Sorbonne Université, Observatoire de Paris, Université PSL, CNRS, LERMA-IPSL, Laboratoire d'Etudes du Rayonnement et de la Matière en Astrophysique et Atmosphères, christof.janssen@upmc.fr

⁴Utrecht University, Institute for Marine and Atmospheric Research Utrecht (IMAU), frederikfelius@gmail.com

⁵Utrecht University, Institute for Marine and Atmospheric Research Utrecht (IMAU), f.e.tapiarodriguez@uu.nl

⁶Utrecht University, Institute for Marine and Atmospheric Research Utrecht (IMAU), T.Roeckmann@uu.nl

At a mole fraction of about 500 ppb, molecular hydrogen (H₂) is the second most abundant reduced gas in the atmosphere after methane. It is important for atmospheric chemistry, and an indirect greenhouse gas due to its reaction with OH, which increases the lifetime of methane. Atmospheric H₂ is produced by incomplete combustion processes, together with CO, and from atmospheric oxidation of CH₄ and non-methane hydrocarbons. H₂ is also emitted into the atmosphere by microbial sources (fermentation, N₂ fixation) and by geologic sources (seeps, volcanoes). The main sinks for atmospheric H₂ are uptake by soil microbes and reaction with OH radicals.

The isotopic composition of H₂ (δ D) has been used to investigate its atmospheric budget, based on the fact that main sources, sinks and chemical processes of H₂ have specific isotopic signatures. Partially due to these studies, the atmospheric H₂ cycle is currently relatively well understood.

We will present an overview on the current knowledge on the atmospheric H₂ isotopic budget, and on the remaining questions, information gaps, and potential for future studies. We will also introduce the newly developed clumped isotope measurements (Δ DD), and will discuss their potential for studying atmospheric, (micro)biologic and geologic processes.