Depletion, metasomatism and water distribution in the oceanic lithospheric mantle

MICHAEL BIZIMIS¹⁰⁷, AARON W. ASHLEY¹³, HUGUES BEUNON¹, SIERRA PATTERSON¹, LUC S. DOUCET⁴, ANNE H. PESLIER⁵, NADINE MATTIELI¹ ¹ SEOS, Univ. of South Carolina, Columbia SC, 29206 USA (* correspondance: mbizimis@geol.sc.edu) ² EOAS, Florida State Univ., Tallahassee FL, 32304 USA ³G-Time, Univ. Libre de Bruxelles, 1050 Brussels, Belgium ⁴EDRG, Curtin University, Perth, WA, 6845, Australia ⁵Jacobs, NASA-JSC, XI03, Houston, TX 77058, USA

The concentration of hydrogen (H, reported as H₂O ppm by weight) controls key physical properties of mantle peridotite (rheology, melting, electrical conductivity). As H is highly incompatible in bulk peridotite, melting will effectively dehydrate the residual lithospheric mantle. However, existing data on oceanic peridotites show variable and higher H₂O concentrations than predicted for melt residues, implying a role for metasomatism in "rehydrating" the mantle lithosphere. Yet, the competing roles of depletion and metasomatism, and how metasomatism controls the H₂O systematics of the lithospheric mantle remain unclear.

We present H₂O (measured by FTIR), major and trace element concentrations on minerals from oceanic peridotite xenoliths from Hawaii, Samoa, Canaries and the Kerguelen archipelago. Orthopyroxene (opx, the dominant host of H₂O in clinopyroxene (cpx)-poor peridotites) from Samoa and Kerguelen depleted peridotites have the lowest H₂O contents, ~10-70 ppm. The Hawaiian peridotite opx and cpx show two distinct trends of decreasing H₂O with decreasing Al contents, a high H₂O trend for Salt Lake Crater, Aliamanu, and a low H₂O trend for Pali, Kauai. In the Kerguelen and Canaries peridotites cpx H₂O contents increase with increasing intensity of carbonatite metasomatism (e.g., Ti depletions, Ce/Yb), but they have lower H₂O concentrations than Hawaiian cpx affected by silicate metasomatism, approximated by the high H₂O contents of pyroxenites.

While each sample location has distinct H₂O vs. major element trends, these and literature data show decreasing H₂O content in oceanic peridotites with increasing depletion. In turn, carbonatite and silicate metasomatism each result in distinct H₂O vs. trace element systematics, but carbonatite is less effective in rehydrating the lithosphere than silicate metasomatism, likely due to the lower activity of H₂O in CO₂ bearing fluids. The role of diffusion in smoothening out H₂O gradients in the lithosphere appears relevant only on the sampling scale of each location.