Tracking the Reactions of SO₂ and Glass in the 2018 Kilauea Ash

E. M. OBORSKI^{1*}, P. L. KING¹, D. E. DAMBY²

- ¹The Australian National University, Research School of Earth Sciences
- (*correspondence: emily.oborski@anu.edu.au)
- ²U.S. Geological Survey, Volcano Science Center (ddamby@usgs.gov)

The 2018 Kilauea eruption was the first major ash producing eruption at Kilauea since 1924. The erupted products reacted with volcanic gases, predominantly SO₂ (sulfur dioxide), that altered minerals and glass in the hydrothermal system, lava lake crust and the eruption plume. Freshly erupted ash samples from the May 13-28 eruptions were mounted in epoxy and polished in anhydrous ethanol. Both individual particles and the bulk sample were observed with QEMSCAN, SEM, electron microprobe, confocal μ -Raman and infrared spectroscopy to identify the altered grains and track the chemical and mineralogical evolution of the eruption.

The ash samples contain a mixture of minerals and mineral aggregates that include primary rock-forming minerals and secondary alteration minerals. Within the erupted products, vesicular and non-vesicular glass fragments have altered to secondary minerals.

Glass fragments that were exposed to high concentrations of SO₂-rich volcanic gas exhibit traits of a shrinking core reaction [1]. Glass is rimmed sequentially by (plagioclase (albite) \rightarrow) Ca-sulfate and/or Mg-sulfate \rightarrow Ca-Al- or (Ca-+Al-) sulfates and Ca-Mg- or (Ca+Mg-) sulfates \rightarrow silica \pm anatase \pm Fe-oxides \pm Fe-sulfide(s). These minerals are consistent with experiments between glass and SO₂ [2], except for the Al-sulfates. Some glass fragments contain alteration rims of Na-sulfate and Al-sulfate and/or natroalunite. The diffusion of Ca and other cations caused the glass to destabilize [2, 3], resulting in albite crystallization in the glass.

We expect the minerals and glass that were altered in the Halema'uma'u lava lake had a greater opportunity for SO₂ exposure than the juvenile particles. The alteration products (sulfates and silica \pm anatase \pm Fe-oxides \pm Fe-sulfide(s)) may provide clues for SO₂ reactions with the ash particles in either the hydrothermal system, lava lake crust and eruption plume.

References: [1] King PL et al. (2018) Rev. Mineral. Geochem. 84(1), 1-56. [2] Renggli CJ and King PL (2018) Rev. Mineral. Geochem. 84(1), 229-225. [3] Delmelle P et al. (2018) Rev. Mineral. Geochem. 84(1), 285-308.