Using noble gas concentrations and δ^{13} C to monitor CO₂ leakage in a carbonate freshwater shallow aquifer

S. NOIREZ¹, B. THOMAS², B. LAVIELLE², A. BALDASSARI¹, P. BACHAUD¹, S. BOUQUET¹, H. VERMESSE¹, P. EKAMBAS¹, F. MARTIN¹, A. ESTUBLIER¹, B. GARCIA¹, T. BRICHART³, P. CHIQUET⁴, L. LUU VAN LANG⁴, J. GANCE⁵, B. TEXIER⁵, B. HAUTEFEUILLE⁶, O. LEROUX⁷, C. LOISY⁷, A. PETIT⁷, L. ROSSI⁷, S. KENNEDY⁷AND A. CEREPI⁷

¹ IFPEN, 1 & 4 avenue du Bois Preau, Rueil-Malmaison, France

² CENBG-IN2P3,19 rue du Solarium, Gradignan, Fance

³GLINCS S.A.S., 2 rue Victor Grignard, Villeurbanne, France

⁴TEREGA, 40 avenue de l'Europe, CS 20522, Pau, France

⁵IRIS Instruments, 1 avenue Buffon, Orléans, France

⁶AXINT, 181 route de l'Azergues, Lucenay, France

⁷ EA 4592 Georessources et Environnement, ENSEGID-Bordeaux INP, France

The Aquifer-CO2Leak project is dedicated to the development of monitoring tools and a methodology for CO2 leaking detection within the saturated zone, as well as understanding the behavior of CO₂ in a carbonate aquifer. From numerical simulations, an induced leakage experiment was performed on the pilot experimental site of Saint-Emilion [1] in France. Water was saturated with a gas mixture of CO₂, He and Kr in a specially designed tank, and was then injected in the aquifer. Monitoring was conducted through 3 observation wells by collecting periodic samples. This study focuses on the complementary usefulness of geochemical tracers (13 C isotopes [2] and noble gas [3]) to monitor CO₂ plume distribution. The comparison of noble gas concentrations with that of dissolved inorganic carbon (DIC) allow us to predict and estimate the extent and the rate of CO₂ migration. The DIC close to the injection site is isotopically enriched by 2‰ while its concentration jumps by 25%. Furthermore, He and Kr exhibit different times of arrival at the control well. However, far from the injection well, $\delta^{13}C$ and DIC concentrations change less significantly, while noble gases arrive simultaneously. This suggests a change in the transport of species, from an initial diffusion regime to advection.

[1] Ossara and al., 2020, in review [2] Mayer and al. Int Jour Green Gas Con 37 (2015) 46–60 [3] Lafortune (2007), PhD Thesis, Institut de Physique du Globe de Paris.