Stabilities of MgCO₃ polymorphs up to 150 GPa

J. BINCK 1* , L. Bayarjargal 1 , S. S. Lobanov 2 , W. Morgenroth 1 , R. Luchitskaia 1 , C. J. Pickard 3,4 , V. Milman 5 , K. Refson 6,7 , D. B. Jochym 8 , P. Byrne 9 and B. Winkler 1

¹Goethe-Universität Frankfurt, Frankfurt am Main, Germany (*correspondence: binck@kristall.uni-frankfurt.de)

²Deutsches GeoForschungsZentrum GFZ, Potsdam Germany

³University of Cambridge, Cambridge, UK

⁴Tohoku University, Sendai, Japan

⁵BIOVIA Dassault Systèmes, Cambridge, UK

⁶Royal Holloway University of London, Egham, UK

⁷ISIS Facility, Rutherford Appleton Laboratory, Chilton, UK

⁸Rutherford Appleton Laboratory, Chilton, UK

⁹University of York, Heslington, UK

The possible coexistence of silicates and MgCO₃ was proposed for cold and oxidized oceanic slabs in the lowermost mantle [1]. Above 80 GPa and 2000 K, model predictions and X-ray powder diffraction experiments have indicated that MgCO₃ (magnesite) transforms into a new polymorph MgCO₃-II with space group C2/m, where carbon becomes tetrahedrally coordinated by oxygen and forms {C₃O₉}⁶ rings with *sp*³ hybridized bonds [1,2]. However, alternative structures have also been proposed for the same *P.T*-conditions [3].

Here, we report the phase relations in MgCO₃ as observed by Raman spectroscopy at high pressures (≤148 GPa) after applying high temperatures (≤3600 K) in CO₂ laser-heated diamond anvil cell experiments (LH-DAC). Our study provides the first Raman spectra of pure MgCO₃ at pressures >55 GPa. Synchrotron X-ray powder diffraction data were obtained at a pressure of 110 GPa. Density functional theory-based model calculations were used to compute Raman spectra for several MgCO₃ high pressure polymorphs. By combining the experimental observations with the DFT-results, we constrain the phase stability field of MgCO₃ with respect to the high pressure polymorph, MgCO₃-II.

Financial support by the DFG Research Unit "CarboPaT" (FOR2125/CarboPaT, BA4020, Wi1232) is gratefully acknowledged.

[1] Maeda et al. (2017), Sci. Rep. 7, 40602. [2] Oganov et al. (2008), EPSL 273, 38-47. [3] Pickard & Needs (2015), Phys. Rev. B 91, 104101.