Goldschmidt2020 Abstract

Impact of cosmogenic Ar-39 production on groundwater dating

S.MUSY¹, K. HINSBY², J.SÜLTENFUSS³, J.LINDERBERG⁴ R.Purtschert¹

¹Climate and Environmental, University of Bern, 3012 Bern, Switzerland (*correspondence:

stephanie.musy@climate.unibe.ch) 2Geological Survey of

Denmark and Greenland, Øster Voldgade 10, 1350

Copenhagen, Denmark (khi@geus.dk)

³Umweltphysik, University Bremen, Otto Hahn Allee, 28355, Bremen, Germany (<u>suelten@uni-bremen.de</u>)

⁴VandCenter Syd as, Odense, Denmark (<u>jl@vandcenter.dk</u>)

The constant activity of Argon-39 ($t_{1/2} = 269$ yrs) in the atmosphere (100%mod) and its inertness in the subsurface makes it an ideal dating tracer on time scales from 50 to 1200 years. A potential limitation is the possibility of underground production by neutron activation of potassium. Over modern Ar-39 concentrations have for example been observed in U-and Th- rich deep crystalline rocks [1]. Cosmogenic neutrons in shallow depths have little impact if recharge is fast. However, unlike neutrons, muons reach deeper layers but their relevance for radioargon production via ${}^{39}K(\mu,\nu_{\mu}){}^{39}Ar$ reactions was never considered so far.

We report on a large scale groundwater dating campaign in Funen (Denmark). In this area, over modern ³⁹Ar activities are observed in low U formations at relatively shallow depths. This is likely the result of ³⁹Ar production by muon capture [2]. In the presentation, calculated production rates are compared with ³⁹Ar and ³⁷Ar measurements. Additionally, ⁸⁵Kr, ²²²Rn, ³⁶Cl and ³H/³He data are used to constrain residence time and production mechanisms. By considering the ³⁹Ar production rate- and the water residence time as function of depth, the integrated impact of cosmogenic ³⁹Ar production is evaluated for specific recharge scenarios. The results of over 100 ³⁹Ar measurements are then used for a regional mapping of groundwater residence times in this area highly affected by pesticides and fertilizers.

[1] O. Šrámek et al. 2017 [2] D.-M. Mei et al. 2010