Phosphorus sources, bioavailability, and cycling in the Murderkill River, Delaware

MARGARET S. MUSSER^{1*}, DEB P. JAISI¹

¹ Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA (*correspondence: msmuss@udel.edu)

Excess phosphorus (P) is a major cause of water quality degradation and eutrophication worldwide. While the Delaware Bay overall is less prone to eutrophication, one of its sub-estuaries, the Murderkill Watershed, has experienced historically high P influx and seasonal eutrophic conditions. Here we sampled different forms of P from the Murderkill Watershed, including soil-P from agricultural, residential, and forested land, effluent-P from the wastewater treatment facility within the Murderkill River, and dissolved and particulate-P in the Murderkill River itself in mid-Historical data from Delaware Natural September. Resource and Environmental Control (DNREC) and USGS reports September averages of inorganic P (Pi) concentrations ranging 0.6–6 μ M within the freshwater and tidal portions of the Murderkill River for more than a decade. Pi concentration data from this study falls within the bounds of the historical range. Despite natural P fluctuations, P_i concentration is decreasing at the confluence with the wastewater treatment facility.

Additionally, among different soil P pools, the highest concentration of P_i is found in the NaOH-P pool across soils from three different land-uses — forested, agricultural, and residential—in the Murderkill watershed. Agricultural soils have the highest P content overall. Phosphate oxygen isotope ($\delta^{18}O_P$) analysis is applied to water, soil, and particulate matter to identify potential sources of P in the Murderkill watershed. Identifying the particular sources or processes of P abatement is crucial to mitigating water quality concerns and to avoid exceeding the Murderkill River's TMDL.