Pressure dependence of the carbonation kinetics of CaO under H₂O saturation

 $\begin{array}{l} R. \, MILETICH^{1*}, G. \, Gravogl^{1,2}, F. \, Birkelbach^{3}, D. \\ M \\ ULLER^{2}, C.L. \, Lengauer^{1}, P. \, Weinberger^{2} \end{array}$

¹Institut für Mineralogie und Kristallographie, Universität Wien, A-1090 Wien, Austria (*ronald.miletichpawliczek@univie.ac.at, georg.gravogl@univie.ac.at, christian.lengauer@univie.ac.at)

²Institut für Angewandte Synthesechemie, TU Wien, A-1060 Wien, Austria (danny.mueller@tuwien.ac.at, peter.e163.weinberger@tuwien.ac.at

³Institut für Energietechnik und Thermodynamik, TU Wien, A-1060 Wien, Austria (felix.birkelbach@tuwien.ac.at)

Carbonation experiments of calcium oxide were performed in the low-temperature regime (ranging from 25°C to 100°C) at variable CO₂ gas pressures (from 10 to 50 bar) in a modified high-pressure reaction chamber adapted for in-situ XRD measurements. Conditions of water saturation on the sample powder was achieved by using a HPLC pump. The carbonation reaction was monitored by means of timeresolved XRD at a time resolution of 60 to 120 seconds using a 300K Pilatus detector on a Stoe Stadivari system. Conversion rates were extracted from quantitative phase analyses as obtained from Rietveld refinements.

CaO completely transforms within a few minutes by reaction with CO₂ and H₂O forming Ca(OH)₂ in a transient state and finally CaCO₃ A distinct P and T dependence can be observed and the non-parametric kinetic analysis confirmed the P,T dependence. Considering the two reactions steps CaO \rightarrow Ca(OH)₂ and CaO/Ca(OH)₂ \rightarrow CaCO₃, a positive dependence on T and almost no P effect was observed for the hydration reaction, whereas a pronounced negative Tdependence together with a remarkably strong P-effect was found for the reaction part of the carbonation.