DNRA dominates NO₃⁻reduction in persistantly anoxic Saanich Inlet

CELINE C MICHIELS^{1.2}, JULIA A HUGGINS¹, RACHEL L SIMISTER¹, KATHARINE J THOMPSON¹, STEVEN J HALLAM¹, SEAN A CROWE^{1,3}

¹ Department of Microbiology and immunology, University of British Columbia, BC Canada. <u>cmichiels@srk.com</u>

² SRK consulting, Vancouver, BC Canada

³ Department of Earth Sciences, Hong kong University, HK, <u>sacrowe01@gmail.com</u>

Modern oceans contain large volumes of anoxic water that are currently expanding due to anthropogenic activities. Similarly, the Archean and Proterozoic oceans were almost entirely anoxic. High rates of anaerobic N-metabolisms characterize these anoxic waters, resulting in intense cycling of N through microbial metabolisms. This can either lead to N-loss or N-retention, depending on the partitioning of Nreduction across denitrification, anammox, and dissimilatory NO⁻₃ reduction to NH⁺₄ (DNRA). While substrate supply rates are a first order control on the rates of N-reduction, the controls on partitioning across the different pathways remain uncertain and this confounds efforts to predict the response of the marine N-cycle to deoxygenation. Here we show that DNRA dominates N-reduction on an annual basis in Saanich Inlet, a persistently anoxic fjord that serves as an analogue for anaerobic marine microbial metabolisms. Rates of DNRA varied between 10⁻⁵ to 1.4 mol N m⁻² d⁻ ¹ and constituted up to 99% of total NO₃⁻ reduction. While anammox and denitrification play an important role throughout most of the year, high rates of DNRA develop following introduction of new oxidants and substrates to the anoxic deep-waters during renewal events. Although often overlooked, DNRA appears to be more important than previously thought, and, with changing oxygen dynamics in the ocean, DNRA could have a large effect on the oceanic nutrient status, possibly promoting euxinia through enhanced Nretention and increased primary production.