Generation of thermogenic methane in the Central Alps (Switzerland) during Mid Miocene metamorphism – New insights from paired clumped isotopologues ($^{13}CH_{3}D$ and $^{12}CH_{2}D_{2}$)

 $\begin{array}{c} Mangenot, X^{1,3}. \ Tarantola, A.^2, \ Girard, J.P.^3, Le \\ V.H.^2, \ Mullis, J.^4, \ Eiler, \ J.M.^1 \end{array}$

¹Caltech, Geological and Planetary Sciences (USA) *xmang@caltech.edu.

² Université de Lorraine, CNRS, GeoResssources (France)
³Total (France)

⁴Institute of Mineralogy and Petrography (Switzerland)

This paper reports analyses of ancient methane sealed in fluid inclusions of tectonic veins to document a widespread methanogenesis process during the Middle Miocene Alpine compression. The investigated fluid inclusions are dominated by co-genetic H₂O- and CH₄inclusions. Molecular and isotopic analyses of the CH₄bearing fluid inclusions ($\delta^{13}C$, δD , $\Delta^{12}CH_2D_2$ and Δ^{13} CH₃D) indicate than entrapped methane is a dry thermogenic gas [C1/(C2+C3) > 95%] generated at very high maturity ($\delta^{13}C = -26/-30\%$ and $\delta D = -126/-$ 137‰). This methane preserves internal isotopic equilibrium in Δ^{13} CH₃D/ Δ^{12} CH₂D₂ space, that translate into temperatures of 243±18°C (Δ^{13} CH₃D; n=10) and 216±14°C ($\Delta^{12}CH_2D_2$; n=10). These "clumping" temperatures agree with the mineral precipitation temperatures derived from FI microthermometry (Th = 227/260°C). Our findings reveal that a significant methanogenesis process occurred during peak metamorphic temperatures (c. 25 to 15Ma) from the catagenesis of the surrounding organic-rich flysch (Ro>4-5%). Then, in a subsequent event during the Miocene (c. 17 to 10Ma), the nappe structure started to updome and fracture, a process that may have favored significant emission of methane into the atmosphere in a time span overlapping the mid-Miocene climatic optimum event, i.e. a relatively warm period.