In situ sulfur and lead isotope analyses of the Jinlongshan gold deposit in Southern Qinling Orogen, China: Implications for ore-forming source

YUANBO MAI, LAIMIN ZHU*, LEI LEI, XIAO XIONG, BO LI

1State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, No.229 Taibei Road, Xi’an 710069, China
(*Correspondence: zhulaimin@nwu.edu.cn)

The Jinlongshan gold deposit, Shaanxi province, central China, is a large gold deposit (>150 t Au) in the Southern Qinling Orogen. Structurally controlled gold mineralization is hosted in Upper Devonian to Lower Carboniferous carbonaceous clastic-carbonate sequences. Although it had been widely studied by geologists, ore-forming sources of deposit remains debatable, while both intrusion-linked and non-intrusion linked models have been proposed [1, 2].

In this paper, in situ sulfur and lead isotope analysis were performed on a diverse set of sulfides of different generations to trace the ore-forming sources as well as the genetic mechanism of Au mineralization. Three stage sulfides were identified from Jinlongshan gold deposit. Sulfur isotope analyses of sulfides by LA–MC–ICPMS show a wide range of δ³⁴S values from −29.9‰ to +48.4‰. Pre-ore stage pyrite (δ³⁴S_{Py1} = −29.9‰ to +42‰) formed by bacterial sulfate reduction of Upper Devonian marine sulfate. Ore stage sulfides (δ³⁴S_{Py2} = 10.1‰ to 15.3‰, δ³⁴S_{Apy} = 9.6‰ to 13.8‰, δ³⁴S_{Snt} = 13.9‰ to 14.3‰) have restricted range of δ³⁴S values that are interpreted to result from the underlying Paleozoic sedimentary rocks by decomposition of pyrite and/or inorganic reduction of sulfate. Post-ore stage pyrite (δ³⁴S_{Py3} = −4.4‰ to +48.4‰) formed by mixing of shallow meteoric water with sedimentary components (negative δ³⁴S values) and deep fluids (extremely high δ³⁴S values). Likewise, the Pb isotope compositions of ore stage sulfides resemble those of underlying Paleozoic sedimentary rocks, but are different from Precambrian metamorphic basement rocks and granitoids in the basin. From these observations, we proposed the sulfur and ore metals of the Jinlongshan gold deposit were sourced from the underlying Paleozoic sedimentary rocks.