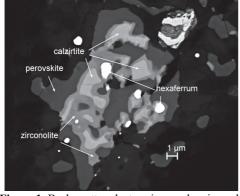
Discovery of meteoritic calzirtite in Leoville: A new ultrarefractory phase from the solar nebula


Сні Ма

Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA (chima@caltech.edu)

During a nanomineralogy investigation of the Leoville CV3 carbonaceous chondrite, calzirtite (Ca₂Zr₅Ti₂O₁₆) was identified in an ultrarefractory inclusion within an amoeboid olivine aggregate, using field-emission scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS) and electron back-scatter diffraction (EBSD) analyses. Reported here is the discovery of calzirtite in a primitive meteorite, as one of first formed solids in the solar system.

Calzirtite occurs as irregular grains (0.5 – 1.5 μ m in size), in zirconolite, along with hexaferrum and perivskite (Fig. 1), occupying the core area in an ultrarefractory inclusion with a rim consisting of Zr,Sc-rich grossmanite, surrounded by olivine. The chemical composition of calzirtite by SEM-EDS is (wt%) ZrO₂ 68.8, TiO₂ 14.4, CaO 9.1, Y₂O₃ 6.8, Sc₂O₃ 1.0, giving rise to an empirical formula (based on 16 O atoms *pfu*) of (Ca_{1.50}Y_{0.50})Zr_{5.00}(Ti⁴⁺_{1.32}Zr_{0.17}Ti³⁺_{0.34}Sc_{0.12}Y_{0.05})O₁₆, with Ti⁴⁺ and Ti³⁺ partitioned on stoichiometry. EBSD analysis revealed that calzirtite has a tetragonal $I4_1/acd$ structure, identical to that of synthetic Ca₂Zr₅Ti₂O₁₆, showing a = 15.21 Å, c = 10.11 Å and z = 8.

Calzirtite joins other Zr-rich minerals from carbonaceous chondrites, including allendeite, tazheranite, lakargiite, zirconolite, kangite, panguite, baghdadite, zirkelite, and baddeleyite. Calzirtite probably formed by condensition or crystallized from a refractory melt in the solar nebula.

Figure 1: Back-scatter electron image showing calzirtite with zirconolite, hexaferrum and Y-rich perovskite in Leoville.