Mantle metasomatism and crustal contamination in carbonatites the East African Rift – A case study of Sukulu and Tororo (Uganda)

Z. BENKÓ¹, T. MAGNA², K. MOLNÁR¹, V. RAPPRICH², L. PALCSU¹, G. CZUPPON^{1,3}, B. ČEJKOVÁ²

 ¹Inst. Nuclear Physics, Debrecen, Hungary; benko.zsolt@atomki.mta.hu
²Czech Geological Survey, Prague, Czech Republic
³Inst. Geol. Geochem. Research, RCAES, Budapest, Hungary

The world-class apatite deposits of Sukulu and Tororo carbonatite complexes (SE Uganda; Paleogene to Neogene age) are magmatic–hydrothermal products of the East African rift system. Noble gas (He, Ne, Ar) and H isotope analysis, as well as microthermometry measurements on fluid inclusions hosted by calciocarbonatites, combined with bulk-sample δ^{18} O, δ^{13} C analysis and trace element measurements, have been carried out to constrain the source regions, formation and post-emplacement processes, and evaluate economic potential of the strategic metals (e.g. REE, Nb).

The primary two-phase aqueous liquid + vapour fluid inclusions in apatite display homogenization temperatures between 270–350°C and 250–300°C for the Sukulu and Tororo, respectively. The observed low temperatures and relatively high salinities (13–18 NaCl equiv. wt%) of the fluids imply that the carbonatites are hydrothermal (or strongly hydrothermally overprinted) in origin and can be classified in terms of their origin as carbohydrothermal.

The ³He/⁴He ratios ranging from 6.5 to 9.3 R_A, Ne isotope ratios (²⁰Ne/²²Ne = 9.4–11.8; ²¹Ne/²⁰Ne = 0.028–0.041), as well as stable C–O isotopes ($\delta^{18}O = 7.5$ –8.9‰, $\delta^{13}C = -3.85$ to -1.07%) indicate that the carbonatites originated ultimately from a 'MORB-like' mantle source. Barium concentrations, Nb/Y ratios as well as the total REE vs. Sr/Ba inter-relations imply only a limited contamination of the primary mantle derived fertile magma with REE-enriched subcontinental mantle lithosphere.

The more radiogenic noble gas compositions, higher Ba and ΣREE concentrations, and lower homogenization temperatures of the Tororo complex imply extended crustal interaction for the fluids and/or contamination of the parent magma with a metasomatized subcontinental mantle lithosphere.

Supported by the Czech Science Foundation (19-29124X).