Rhyolitic (Micrographic Granite) Igneous Clasts from Ancient Mars in the Martian Meteorite Northwest Africa 8171

M. LINDNER1, A. K. SCHMITT2, A. N. KROT3 AND F. E. BRENER1,3

1Department of Geosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany; 1s7493063@stud.uni-frankfurt.de
2Institute of Earth Sciences, Heidelberg University, 69120 Heidelberg, Germany
3Hawai‘i Institute of Geophysics and Planetology, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA

We report rhyolitic igneous rock clasts and SiO$_2$ grains found within a proto-breccia clast (PBC-01) in the Martian polymict breccia Northwest Africa 8171 (NWA 8171). Proto-breccia clasts show a brecciation history prior to incorporation into a final regolith breccia [1]. PBC-01 is depleted in Mg compared to the typical NWA 8171 groundmass. It texturally resembles a rapidly crystallized melt and consists of crystal fragments, glassy melt chards, and a low number of igneous clasts inter alia.

Numerous crystal fragments are SiO$_2$ grains showing a sub-angular to sub-rounded shape; the largest 12 fragments are 40–170 µm in apparent diameter. Two igneous rock clasts (clast8 and clast9, 220×110 µm and 30×20 µm, respectively) are of rhyolitic composition. We focussed our study on the clast8 because of its larger size and higher mineral variability. It consists mainly of two potassic feldspars (An$_{11}$Ab$_{82}$Or$_{7}$-An$_{0}$Ab$_{27}$Or$_{73}$) forming a micrographic intergrowth with α-quartz; minor phases include acicular chlorapatite, a euhedral Fe-oxide grain, and small zircon crystals. Three zircon grains ([z1, z2, z3], 1–4 µm in size), were used for in situ U-Pb dating with SIMS. This yielded two data points (z1 and z2) which fall in row with reported zircon data for paired samples NWA 7533 and NWA 7034 [2,3]. The discordia intercepts at 4289±970 Ma and 1397±410 Ma (2σ error). z3 plots off that discordia, with lower 206Pb/238U and 205Pb/235U values. We tentatively interprete the U-Pb data in the sense, that z1 and z2 plot on a similar discordia as previously measured zircons by [2,3]. z3 was likely affected by a Pb-loss event at <<1500 Ma. The data suggest that evolved melts were already present on ancient Mars. The co-occurrence of SiO$_2$ grains might suggest that these melts crystallized in larger bodies, opposed to the rhyolitic melts reported in [4]. Their erosional products where present within the Martian regolith when the PBC-01 lithology formed.