Genome-resolved investigation of potential new mercury-methylating marine bacterial phyla

Heyu Lin¹, David B. Ascher^{1, 2}, Yoochan Myung^{1, 2}, Carl H. Lamborg³, Steven J. Hallam⁴, Caitlin M. Gionfriddo⁵, Ryan R. Wick⁶, Kathryn E. Holt^{6, 7} and John W. Moreau^{1, 8, *}

¹The University of Melbourne, Melbourne, VIC, AUS ²Baker Institute, Melbourne, VIC, AUS ³University of Santa Cruz, CA, USA ⁴University of British Columbia, BC, CAN ⁵Oak Ridge National Laboratory, TN, USA ⁶Monash University, VIC, AUS ⁷London School of Hygiene & Tropical Medicine, UK ⁸University of Glasgow, UK; *john.moreau@gla.ac.uk

Microbes that can transform aqueous mercury (Hg) into methylmercury (MeHg) require the gene pair hgcAB, previously associated only with anaerobic bacteria. Using genome-resolved metagenomic analyses, we found potential new Hg-methylating bacterial phyla in Antarctic seawater and Canadian coastal waters associated with variable degrees of oxygenation. Among these new phyla was a clade of Marinimicrobia with evidence to suggest acquisition of hgcAB through lateral gene transfer, as well as members of Calditrichaeota, SAR324 and Nitrospina. HgcAB-carrying Marinimicrobia and Nitrospina appear to be environmentally widespread across ocean sites, with major roles to play in marine biogeochemical cycling. Our findings suggest a broadened habitat range for Hg-methylating microorganisms than previously surmised. Under plausible climate change scenarios, these findings imply a need to assess possible negative ecosystem and human health impacts from increased mercury methylation potential.