Transient and stepwise ocean oxygenation during the Ediacaran Shuram Excursion

ZIHENG LI^{1*}, MENGCHUN CAO², SEAN J. LOYD³, THOMAS J. ALGEO^{1, 4, 5}, XIANGDONG WANG^{1*}, LAISHI ZHAO^{1*}

¹ State Key Laboratory of GPMR, China University of Geosciences

² School of Geosciences, China University of Petroleum, Qingdao

³ Department of Geological Sciences CSU, Fullerton

⁴ State Key Laboratory of BEG, China University of Geosciences

⁵ Department of Geology, University of Cincinnati

*Corresponding authors: zihengli@cug.edu.cn

The Ediacaran Shuram Excursion (SE) was a key episode in the history of atmospheric and oceanic oxygenation that has also been linked to contemporaneous bio-evolutionary events. However, key aspects of the redox state of Ediacaran oceans during the SE remain unknown. Here, marine-carbonate-associated uranium isotope compositions (δ^{238} U) were used to investigate shallow-water oxygenation during the SE. We found that the onset of the SE was characterized by a shift toward higher δ^{238} U values, which is present in widely separated coeval sections, including in South China (from -0.8‰ to -0.3‰), Siberia (from -0.75‰ to -0.3‰), California (from -0.75‰ to -0.3‰), and Mexico (from -0.7% to -0.3%). Our δ^{238} U record, in combination with published magnetostratigraphic and astrochronological data, reveals a distinct and transient oceanic oxygenation event that lasted ~6.8-Myr. The δ^{238} U signal exhibits a ~0.65-Myr lag relative to the Shuram $\delta^{13}C_{carb}$ excursion owing to a two-step oxygenation event during the onset of the Shuram Excursion.

Fig. 1. $\delta^{13}C_{carb}$ and $\delta^{238}U$ profiles of the onset of the SE.