Stratification of dissolved organic matter in the upper 2000 m water column of the Mariana Trench

XINXIN Li^{1*}, Penghui Li¹, Jianchang Tao¹, Jian Lin^{2,3}, Chen He⁴, Quan Shi⁴, Chuanlun Zhang¹

- ¹ Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China (*correspondence:lixinxin@sustech.edu.cn)
- ² Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
- ³ Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- ⁴ State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China

Abstract

Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and absorbance spectroscopy were utilized to investigate the molecular composition of marine dissolved organic matter (DOM) from the upper 2000 m water column of the Mariana Trench. Molecular indices based on the relative abundance of 4699 formulas assigned from FT-ICR MS were analyzed. The degradation index (I_{DEG}) varied from 0.645 ± 0.014 in the surface layer to 0.722 \pm 0.021 below 500 m, indicating that the DOM in the deep layer was more refractory. This was supported by an increase of aromaticity index (AI_mod) from 0.200 \pm 0.003 in the surface layer to 0.220±0.003 at depths. Multivariate analysis based on both bulk molecular parameters and relative abundance of individual formulas indicated a feature of DOM stratification: the upper layer (5-75 m), middle layer (200 m) and deep layer (500-2000 m). The surface enriched formulas were characterized by higher H/C and lower AImod, while deepenriched formulas showed lower H/C and higher AImod. Variations in AI_{mod} and H/C for these formulas indicated that extracellular release (mainly from primary production) and photochemical processes strongly affected the DOM composition in euphotic zone, while microbial processes likely exerted a tremendous influence on the DOM composition at all depths. Moreover, strong correlations between spectroscopic indices (a325, S275-295 and S280-400) and FT- ICRMS derived proxies indicated these two approaches can be integrated to provide valuable information on themolecular characterization of open ocean DOM.