Volatiles in melt inclusions and apatite from Erebus phonolite

WEIRAN LI¹⁺, FIDEL COSTA^{1,2}, CLIVE OPPENHEIMER³

Earth Observatory of Singapore, Nanyang Technological

University (*correspondence: weiran.li@ntu.edu.sg)

² Asian School of Environment, Nanyang Technological University

³ Department of Geography, University of Cambridge

Magmatic volatiles such as CO₂ and H₂O play a major role in magmatic processes and eruptive behaviour. Abundances of H₂O in the melt can be determined by volatile measurements on apatite, combined with thermodynamic analyses of F-Cl-OH partitioning between apatite and melt [1]. A similar method should be possible to assess melt CO₂ contents but studies of the concentration of CO₂ in apatite and its partition behaviour are few. Here we provide new measurements (using SIMS) and thermodynamic analysis of CO₂, H₂O, F, Cl and S concentrations in co-existing apatite and phonolitic glass inclusions, hosted by anorthoclase megacrystals of lava bomb samples from Mt. Erebus (Antarctica; [2]). We find that the melt inclusions (MIs) contain similar volatile compositions: ~0.16 wt.% H₂O, ~90 ppm CO₂, ~2100 ppm F, ~1400 ppm Cl, ~350 ppm S. The coexisting fluorapatite crystals have a limited range of $F \approx$ 3.5 wt.%, Cl \approx 0.13 wt.%, H₂O \approx 0.06 wt.%, and S \leq 5 ppm, but a wide variation in CO₂ from \approx 120 to 1600 ppm. Apatite-melt inclusion pairs indicate exchange coefficient (K_{p}) for Cl-F of ~0.11, equivalent to that calculated from [1] at 950–1000 °C. Using the apatite hygrometer model of [1], the melt should contain >0.5 wt.% H₂O. This is higher than that measured in MIs but can be explained by diffusive H₂O loss. The calculated values of the Nernst partition coefficient (D) for CO_2 are ~1.6–2.8, which are much higher than those (of ~0.11–0.12) determined by [3] at 1 GPa and 1250 °C for trachytic melts and F-rich apatite. The calculated value of exchange coefficient K_D for H₂O-CO₂ (on the basis of wt.%) is ~0.04 (±0.02), ~10 times lower than that determined at 1250 °C by [3]. This discrepancy can be explained by a temperature difference of ~300 °C, and is comparable to the difference in K_p for OH-F between 950 and 1250 °C [1]. More experimental studies on apatite-melt CO₂ partitioning are needed to improve estimates of melt CO₂ budgets from CO₂ in apatite.

[1] Li & Costa (2020) *GCA* **269**, 203-222. [2] Moussallam *et al.* (2015) *EPSL* **413**, 1-12. [3] Riker *et al.* (2018) *Am Mineral* **103**, 260-270.