Thermodynamics of gold-sulphide clusters in ore vapors: exploring phase diagrams of Au_mS_nH_x nanoclusters using atomistic simulations

KONO H. LEMKE¹

¹Department of Earth Sciences, University of Hong Kong, Pokfulam Road, Hong Kong, SAR (kono@hku.hk)

We have studied the thermodynamic stability of gold clusters ranging from Au_3 to Au_{17} and their sulfur/hydrogen-containing forms at high temperatures using particle swarm, density functional theory (DFT) and MP2 atomistic simulations. The focus of this work is to construct reliable phase diagrams of $Au_m S_n H_r$ nanoclusters, in order to predict their size, composition, shape and distribution in volcanic and hydrothermal ore vapors. We will initially focus on the $Au_3S_nH_r$ and $Au_{17}S_nH_r$ systems, the phase relationships in $Au_3S_{\mu}H_{\nu}$ and $Au_{17}S_{\mu}H_{\nu}$ and examine how temperature and partial pressures of H₂, H₂S, and S_n influence the stability of $Au_m S_n H_x$. The figure below shows the phase diagram obtained for Au₃ at 298 K under a broad range of partial pressures of H_2 and sulfur gas, together with H_2S isobars at 10^{-5} , 10^{-2} and 10atm. As seen, in the region of low pH_2 and pS_2 pure Au₃ remains stable, however, when the pressure of H₂ and S₂ increases, adsorption of H₂ and S₂ onto Au₃ edges takes place, producing Au₃H₆, Au₃S₆ and Au₃S₄H₂ clusters. MP2 calculations have also been undertaken to obtain p-T phase diagrams of Au_3S_n and $Au_3S_{\mu}H_{\nu}$, and these show that Au_3 and Au_3S exist only in low pS_2 vapor and at high temperatures (>800 K), whereas S-rich phases Au_3S_2 and Au_3S_4 become more stable at T \approx 450-700 K and $pS_{2} \approx 10^{-7} - 10^{-2}$ atm. This approach has been applied to larger gold clusters, in particular, we have examined interactions between H₂, H₂S and S_n species at edge, corner and face sites of Au₁₇, and will present phase diagrams for the $Au_{17}S_nH_r$ system at p-T conditions characteristic of volcanic gases.

