The effect of the Na/K ratio on the viscosity and structure of ironbearing aluminosilicates

ANNE-MARIE LEJEUNE^{1,2}, CHARLES LE LOSQ¹ AND DANIEL R. NEUVILLE¹

 ¹ IPGP-CNRS, Géomatériaux, Université de Paris, 1 rue Jussieu, 75005 Paris, France (lejeune@ipgp.fr, lelosq@ipgp.fr, neuville@ipgp.fr)
² IPGP-CNRS, OVSM, Lieu-dit Blondel, Morne-la-Rosette, 97250 Saint-Pierre, Martinique

Le Losq and Neuville (2013) have shown that the viscosity and structure of silica-rich alkali tectosilicate glasses and melts do not follow ideal mixing rules, which imply a decrease followed by an increase of the melt viscosity with Na/K mixing as proposed by the classic alkali mixing model. Instead viscosity increases non-linearly when K^+ ions substitute Na⁺ ions. This effect can have important consequences for eruptions of volcanoes like Toba, Mont Dore or Yellowstone, which compositions are close to rhyolites (e.g. 83%SiO₂-8%Al₂O₃-3.7%K₂O-3.4%Na₂O). The aim of the work presented here is to test the mixing effect of Na/K on SiO₂-poorer compositions, such as those of the Yasur basaltic-trachyandesites or of the Nyiragongo nephelinitic lavas, that are also rich in iron and alkaline-Earth elements.

Our first measurements show that viscosity increases with Na/K substitution. Therefore its variations with chemical changes cannot be reproduced using an ideal mixing model of the configurational entropy. Consequently, it appears that Na and K elements do not mix randomly in the studied ironaluminosilicate melts. We plan to present and discuss new viscosity, Raman and Xanes at the Fe K-edge data and try to establish some links to better understand magmatic processes.

Keywords: aluminosilicate glasses, redox, lava, viscosity

Reference: Le Losq C. and Neuville D.R. (2013) *Chem. Geol.* **346**, 57-71.