Mechanism of Sediment Incorporation into Lake Ice Using ⁷Be, ²¹⁰Po and ²¹⁰Pb as Tracer

Mark baskaran 1* , lathan saperstein 1 , max denny 1 and chandra tummala 2

 ¹Department of Geology, Wayne State University, Detroit, MI 48202 (* correspondence: Baskaran@wayne.edu)
²Department of Civil & Environmental Engineering, Wayne State University, Detroit, MI 48202.

Extreme cold weather conditions in Lake St. Clair, SE Michigan (1114 km² area, 3.6 m depth) in February 2019 provided a unique opportunity to investigate mechanism of scavenging of atmospherically delivered ⁷Be, ²¹⁰Pb and ²¹⁰Po on to fine sedimentary material and their eventual fate. From collection and analysis of these radionuclides in a suite of sediment extracted from dirty ice, pure ice and precipitation samples, we report the activities of ⁷Be and ²¹⁰Pb in sediment in ice varied between below detection limit to >6,000 dpm/g and excess ²¹⁰Pb varied between 4 to >800 dpm/g, 2-3 orders of magnitude higher than bottom sediments in the lake and rivers in the study area. Most of the atmospherically-delivered radionuclides are scavenged by resuspeded particulate matter and subsequently incorporated into ice during frazil ice formation.

This implies that sediment entrained in ice serves as a *'cryo-concentrator'* of heavy metals and other pollutants delivered primarily from atmospheric deposition. The ²¹⁰Po/²¹⁰Pb activity ratio in different size-fractions of the ice-sediment varied between 0.08 to 0.68 and provides insights on the sources of these nuclides and their mechanism of incorporation in the sedimentary particulate matter. Detectable ¹³⁷Cs activity was found in many sediment samples. Funding support from RAPID-NSF is acknowledged.