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 Iron oxides, hematite and magnetite, are ubiquitous 

minerals in Earth’s surface and subsurface environments. 
They can be produced via abiotic or biogenic pathways, e.g., 
by magnetotactic bacteria [1], bacteria producing hierarchical 
nano-composite structures [2]. Biogenic nanoparticles have a 

variety of important environ-
mental applications, such as the 
cleaning of As-polluted drinking 
water [3]. Dissolution mecha-
nisms of iron oxides at nano and 
larger scales are obscure due to 
coupled dissolution and Fe3+/ 
Fe2+ electron transfer reactions 

[4]. We employ Kinetic Monte Carlo (KMC) simulations to 
decypher nano-scale dissolution and As adsorption mecha-
nisms for natural and bioengineered hematite nano-particles, 
as well as surfaces of micron-cm sized hematite particles. The 
validation of the model is based on complementary Atomic 
Force Microscopy and Vertical Scanning Interferometry 
studies of dissolving hematite surfaces and their characteriza-
tion for potential adsorption sites.  

As we demonstrated earlier [5], parameterization of a 
KMC model is a critical step affecting its predictive capacity. 
The use of the molecular-scale rates derived from ab initio 
calculations is the preferred method of parameterization. 
Transition metal oxides attracts a great attention from 
physisists due to strong electron-electron correlation effects 
[6]. We adopt the corresponding novel electronic structure 
methods [6] to study bond-breaking mechanisms on hematite 
and magnetite surfaces and calculate molecular reaction rates. 
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