OXYGEN ISOTOPIC HETEROGENEITY IN THE SOLAR SYSTEM INHERITED FROM THE PROTOSOLAR MOLECULAR CLOUD

Alexander N. Krot¹, Kazuhide Nagashima¹, James R. Lyons², Jeong-Eun Lee³, and Martin Bizzarro⁴

¹University of Hawai'i at Mānoa, USA. sasha@hawaii.edu ²Arizona State University, USA. jrlyons2@asu.edu ³Kyung Hee University, KOREA. jeongeun.lee@khu.ac.kr ⁴University of Copenhagen, Denmark. bizzarro@sund.ku.dk

The Sun is ¹⁶O-enriched ($\Delta^{17}O = -28.4 \pm 3.6\%$) relative to the terrestrial planets, asteroids and chondrules ($-7\% < \Delta^{17}O$) < 3‰) [1]. Ca,Al-rich inclusions (CAIs) and amoeboid olivine aggregates (AOAs) are the only solids formed in the Solar System (SS) with Δ^{17} O approaching the solar value. Ultraviolet CO self-shielding [2] resulting in formation of ¹⁶O-rich CO and ^{17,18}O-enriched H₂O is the currently favored mechanism invoked to explain the observed range of $\Delta^{17}O$ among extraterrestrial materials [3-5]. However, the location of the CO self-shielding is not known: this process is suggested to have occurred either in the protosolar molecular cloud [2,3] or in the outer protoplanetary disk [4]. In the latter case, the self-shielding effects in CO and H2O are estimated to have been transferred to the inner SS within several hundred thousand years [4]. CAIs are the oldest SS solids dated [5] and are thought to have formed near the protoSun. Here we show that grossite-rich CAIs with the predominantly low (<5×10⁻⁶) initial ²⁶Al/²⁷Al ratio from CH3.0 chondrites have uniform Δ^{17} O, but exhibit a large range of Δ^{17} O between individual CAIs (-40‰ to -5‰), providing a strong evidence for large variations in Δ^{17} O of the nebular gas in the CH CAI-forming region. In contrast, CAIs with the canonical initial ${}^{26}\text{Al}/{}^{27}\text{Al}$ ratio of ${\sim}5{\times}10^{-5}$ from the CR2, CM2, and CO3.0 chondrites have a very limited range of $\Delta^{17}O$, $-24\pm 2\%$ [7–9]. Because CAIs with the low initial ²⁶Al/²⁷Al are thought to have predated the canonical CAIs and formed within first 10,000-20,000 years of the SS evolution [10], these observations suggest isotopic heterogeneity of the major O-bearing species (CO, H₂O, and silicates) in the early SS was inherited from the protosolar molecular cloud.

References: [1] McKeegan K. D. et al. (2011) Science
332:1528. [2] Thiemens M. H. & Heidenreich J. (1983) Science 219:1073. [3] Clayton R. N. (2002) Nature 415:860.
[4] Yurimoto H. & Kuramoto K. (2004) Science 305:1763.
[5] Lyons J. R. & Young E. D. (2005) Nature 435:317. [6] Connelly J. N. et al. (2012) Science 338, 651. [7] Makide K. et al. (2009) GCA 73:5018. [8] Kööp L. et al. (2016) GCA 184:151. [9] Ushikubo T. et al. (2017) GCA 201:103. [10] Pignatale F. C. et al. (2018) ApJL 867:L23.