Pseudosection modeling and zircon geochronology of barroisite eclogites from the Antarctic Ross orogen

TAEHWAN KIM¹

¹Korea Polar Research Institute, Republic of Korea (taehwan.kim@kopri.re.kr)

I investigated pristine barroisite eclogites from the Ross orogen, Antarctica. Mineral assemblages are represented by garnet + omphacite + calcic/sodic-calcic amphibole + epidote + phengite + paragonite + rutile + quartz. These eclogites revealed three stages of prograde metamorphism, defining two distinctive P-T trajectories, M_{1-2} and M_3 . The P-Tpseudosections were calculated in the (Mn)NCKFMASHO model system. The P-T-M_{H2O} relationship suggests that higher amounts of H₂O are required for the M₁ assemblages, in which hydrous phases are stable, than those for the M₂. The Fe^{3+} content of bulk composition was estimated on the basis of $P-X_{Fe3+}$ and $T-X_{Fe3+}$ diagrams. I adopted the X_{Fe3+} values for original and fractionated bulk compositions which are similar to reported values from medium-T eclogites and unaltered mid-ocean ridge basalts, respectively. A decrease of the X_{Fe3+} values from M₁ to M₂ suggests fo₂ decrease during prograde metamorphism. The eclogites have initially evolved from ~15 to 20 kbar and 520–570 °C (M1) to ~22–25 kbar and 630-650 °C (M2). The second segment (M3A-B) of prograde P-T path was constrained at ~26 \pm 3 kbar and 720 \pm °C, using the garnet-clinopyroxene-phengite 80 thermobarometer. Further details are available in Kim et al. (2019, J. Metam. Geol.).

Two distinctive P-T trajectories of prograde metamorphism were correlated to episodic growth and/or recrystallization of the zircon mantle and rim domains during two stages of subduction burial at 515.2 \pm 3.9 Ma (t σ) and 498.1 \pm 10.8 Ma (t σ), respectively. Average burial rates (<2 mm/year) are too low for cold subduction regime (~5-10 °C/km), suggesting that an exhumation stage intervened between two prograde segments of P-T path. Inherited zircon cores are characterized by the presence of subtle oscillatory zonation and acicular apatite inclusion. The zircon cores are relatively high in Th/U ratios (0.33-0.99), and yielded the 206 Pb/ 238 U ages of 590.9 ± 5.1 Ma (t σ) and 604.8 ± 4.8 Ma $(t\sigma)$. Hf isotopic compositions of the same analytical pits of U-Pb analyses resulted in the initial $\varepsilon_{Hf}(t)$ values of zircon core ranging from +9.2 to +18.8. Combined with mildly alkalic, within-plate to continental basalt-like geochemistry, these late Neoproterozoic gabbroic protoliths of the Cambrian eclogites are spatial-temporal equivalent to c. 600-580 Ma rift to passive margin magmatic rocks in eastern Australia.