The hydrogeochemical evolution of basinal fluids in the Paradox Basin: implications for sources, flowpaths, and residence time

J.-H. KIM¹, C. NOYES¹, A. DELL'ORO¹, R. TYNE²,
G. FERGUSON³, M. PERSON⁴, L. MA⁵, Z.-T. LU⁶,
W. JIANG⁶, G.-M. YANG⁶, C. BALLENTINE²,
P. REINERS¹, AND J. MCINTOSH^{1*}

¹ The University of Arizona, Tucson, AZ 85721, USA (*correspondence: jenmc@email.arizona.edu), (reiners@email.arizona.edu)

² University of Oxford, OX1 2JD Oxford, England, UK (<u>chris.ballentine@earth.ox.ac.uk</u>)

³University of Saskatchewan, Saskatoon, Canada (grant.ferguson@usask.ca)

⁴ New Mexico Tech, Socorro, NM 87801, USA (<u>markaustinperson@gmail.com</u>)

⁵ University of Texas at El Paso, El Paso, TX 79968, USA (<u>Ima@utep.edu</u>)

⁶ University of Science and Technology of China, Hefei, Anhui 230026, China (<u>ztlu@ustc.edu.cn</u>)

The Paradox Basin in the Colorado Plateau has abundant manifestations of paleofluid flow, including sandstone bleaching and ore mineralization, salt tectonics, and hydrocarbon, CO₂, and He reservoirs. Formation water and dissolved gas samples were collected to evaluate the hydrochemical composition, sources, and residence time of remnant fluids as an indicator of the long-term evolution of the Paradox Basin fluid-rock system, using major ion and isotopic (δ¹⁸O- & δ²H-H₂O; δ³⁴S- & δ¹⁸O-SO₄; ⁸⁷Sr/⁸⁶Sr) signatures of fluids and preliminary radio-krypton (81Kr) dating results from produced gases. Pennsylvanian Honaker Trail Formation brines (~0.5 Ma; ⁸¹Kr water age) are a mixture of (1) paleo-evaporated seawater (PES) from the underlying Paradox Formation (>1.5 Ma; ⁸¹Kr water age) containing high concentrations of Fe, Mn, and Cu; (2) (partially evaporated) seawater; and (3) more recent evaporite-derived brines from influx of meteoric water that oxidized sulfides and acquired radiogenic Sr from the overlying Permian Cutler siliclastic formations. Mississippian and Devonian formation waters (~0.8 Ma; ⁸¹Kr water age) were surprisingly young and likely represent PES that was diluted by topographically-driven meteoric recharge, which interacted with radiogenic basement rocks or arkosic sandstones adjacent to the Uncompaghre Uplift, and dissolved evaporites at the base of the Paradox Formation.